• 제목/요약/키워드: antibiotic resistance hydrophobicity

검색결과 6건 처리시간 0.023초

Virulence, Resistance Genes, and Transformation Amongst Environmental Isolates of Escherichia coli and Acinetobacter spp.

  • Doughari, Hamuel James;Ndakidemi, Patrick Alois;Human, Izanne Susan;Benade, Spinney
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.25-33
    • /
    • 2012
  • The association of verotoxic E. coli and Acinetobacter spp. with various antibiotic-resistant, diarrhogenic, and nosocomial infections has been a cause for concern worldwide. E. coli and A. haemolyticus isolated on a number of selective media were screened for virulence factors, antibiotic resistance, and transformation of resistance genes. Out of 69 E. coli isolates obtained, 25 (35.23%), 14 (20.30%), and 28 (40.58%) were positive for Vtx1&2, Vtx1, and Vtx2, respectively, 49 (71.015%) for extendedspectrum beta-lactamases (ESBLs), 34 (49.28%) for serum resistance, 57 (82.61%) for cell surface hydrophobicity, 48 (69.57%) for gelatinase production, and 37 (53.62%) for hemolysin production. For the 14 A. haemolyticus isolates, only 2 (14.29%) in each case from all the samples investigated were positive for Vtx1, Vtx2 and Vtx1&2 respectively, 8 (57.14%) for ESBLs, 7 (50.00%) for serum resistance, 11 (78.57%) for cell surface hydrophobicity, 4 (28.57%) for gelatinase production, and 8 (57.14%) for hemolysin production. Although transformation occurred among the E. coli and Acinetobacter isolates (transformation frequency: $13.3{\times}10^{-7}-53.4^{-7}$), there was poor curing of the plasmid genes, a confirmation of the presence of stable antibiotic-resistant genes (DNA concentration between 42.7 and 123.8 ${\mu}g$) and intragenetic transfer of multidrug-resistant genes among the isolates. The isolates were potentially virulent and contained potentially transferable antibiotic resistance genes. Detection of virulence factors, antibiotic resistance genes, and transformation among these isolates is a very significant outcome that will influence approaches to proactive preventive and control measures and future investigations. However, continued surveillance for drug resistance among these bacteria and further investigation of the mechanism of action of their virulence factors are a necessity.

Increased Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus USA300 Δpsm Mutants and a Complementation Study of Δpsm Mutants Using Synthetic Phenol-Soluble Modulins

  • Song, Hun-Suk;Bhatia, Shashi Kant;Choi, Tae-Rim;Gurav, Ranjit;Kim, Hyun Joong;Lee, Sun Mi;Park, Sol Lee;Lee, Hye Soo;Joo, Hwang-Soo;Kim, Wooseong;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.115-122
    • /
    • 2021
  • Phenol-soluble modulins (PSMs) are responsible for regulating biofilm formation, persister cell formation, pmtR expression, host cell lysis, and anti-bacterial effects. To determine the effect of psm deletion on methicillin-resistant Staphylococcus aureus, we investigated psm deletion mutants including Δpsmα, Δpsmβ, and Δpsmαβ. These mutants exhibited increased β-lactam antibiotic resistance to ampicillin and oxacillin that was shown to be caused by increased N-acetylmannosamine kinase (nanK) mRNA expression, which regulates persister cell formation, leading to changes in the pattern of phospholipid fatty acids resulting in increased anteiso-C15:0, and increased membrane hydrophobicity with the deletion of PSMs. When synthetic PSMs were applied to Δpsmα and Δpsmβ mutants, treatment of Δpsmα with PSMα1-4 and Δpsmβ with PSMβ1-2 restored the sensitivity to oxacillin and slightly reduced the biofilm formation. Addition of a single fragment showed that α1, α2, α3, and β2 had an inhibiting effect on biofilms in Δpsmα; however, β1 showed an enhancing effect on biofilms in Δpsmβ. This study demonstrates a possible reason for the increased antibiotic resistance in psm mutants and the effect of PSMs on biofilm formation.

전통발효식품 유래 유산균의 프로바이오틱스 특성 연구 (Probiotic Properties of Lactic Acid Bacteria Isolated Traditional Fermented Foods)

  • 김은지;조승화;김진경;정도연
    • 생명과학회지
    • /
    • 제29권6호
    • /
    • pp.697-704
    • /
    • 2019
  • 본 연구에서는 전통발효식품에서 분리한 유산균 200여종에 대하여 프로바이오틱 특성을 확인하였다. 내담즙성 및 내산성이 높게 측정된 유산균 4종을 선발하였다. 선발된 유산균은 Lb. plantarum SRCM102224, Lb. plantarum SRCM102227, Lb. paracasei SRCM102329, Lb. paracasei SRCM102343이다. 항균활성, 내산성, 내담즙성, 용혈성, 세포표면 소수성, 장내 세포 부착성, 항생제 내성을 조사하였다. 선발된 유산균 4종 중 SRCM102343은 세포표면 소수성이 95.9%로 대조구 Lb. rhamnosus GG는 13.4%보다 높게 측정되었다. 4종의 유산균의 장내상피세포 caco-2에 대한 부착능을 조사하였다. 그 결과, SRCM102343와 SRCM102329의 Lb. rhamnosus GG보다 부착율이 높았다. 선발된 유산균 4종에 대하여 항균활성 조사 결과, 그 중 3종이 Escherichia coli ATCC 10798, Staphylococcus aureus KCCM 11593, Listeria invanovii KCTC3444, Bacillus cereus ATCC11778 및 S. enterica serovar. Typhi KCTC1926에 대하여 항균활성이 뛰어났다. 이들 결과를 바탕으로 선발된 균주는 프로바이오틱의 가능성으로 기능성식품에 활용이 기대된다.

전통발효식품에서 분리한 유산균의 항균활성 및 프로바이오틱스 기능성 연구 (Antibacterial Activity and Probiotic Properties of Lactic Acid Bacteria Isolated from Traditional Fermented Foods)

  • 강창호;한설화;김용경;정율아;백남수
    • KSBB Journal
    • /
    • 제32권3호
    • /
    • pp.199-205
    • /
    • 2017
  • The aim of this study was to investigate probiotic characteristics and fermentation profile of selected lactic acid bacteria (LAB) isolated from traditional fermented foods. Antibacterial activity against various pathogens, acid and bile salt tolerance, cell hydrophobicity, and antibiotic resistance were examined. 16S rRNA sequencing was carried out to identify eight presumptive LAB isolates. In general, all identified LAB (Enterococcus faecium MG89-2, Lactobacillus plantarum MG207, L. paracasei MG310, L. casei MG311, Streptococcus thermophilus MG510, L. bulgaricus MG515, L. helveticus MG585, and L. fermentum MG590) showed strong antimicrobial activity. Also, the selected strains were resistant to bile acid up to 3% and their autoaggregation rates were as high as 60%. All selected strains tested were sensitive to chloramphenicol, tetracycline, and ampicillin, whereas resistant to nalidixic acid and kanamycin.

Screening of Probiotic Activities of Lactobacilli Strains Isolated from Traditional Tibetan Qula, A Raw Yak Milk Cheese

  • Zhang, Bei;Wang, Yanping;Tan, Zhongfang;Li, Zongwei;Jiao, Zhen;Huang, Qunce
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권10호
    • /
    • pp.1490-1499
    • /
    • 2016
  • In this study, 69 lactobacilli isolated from Tibetan Qula, a raw yak milk cheese, were screened for their potential use as probiotics. The isolates were tested in terms of: Their ability to survive at pH 2.0, pH 3.0, and in the presence of 0.3% bile salts; tolerance of simulated gastric and intestinal juices; antimicrobial activity; sensitivity against 11 specific antibiotics; and their cell surface hydrophobicity. The results show that out of the 69 strains, 29 strains (42%) had survival rates above 90% after 2 h of incubation at pH values of 2.0 or 3.0. Of these 29 strains, 21 strains showed a tolerance for 0.3% bile salt. Incubation of these 21 isolates in simulated gastrointestinal fluid for 3 h revealed survival rates above 90%; the survival rate for 20 of these isolates remained above 90% after 4 h of incubation in simulated intestinal fluid. The viable counts of bacteria after incubation in simulated gastric fluid for 3 h and simulated intestinal fluid for 4 h were both significantly different compared with the counts at 0 h (p<0.001). Further screening performed on the above 20 isolates indicated that all 20 lactobacilli strains exhibited inhibitory activity against Micrococcus luteus ATCC 4698, Bacillus subtilis ATCC 6633, Listeria monocytogenes ATCC 19115, and Salmonella enterica ATCC 43971. Moreover, all of the strains were resistant to vancomycin and streptomycin. Of the 20 strains, three were resistant to all 11 elected antibiotics (ciprofloxacin, erythromycin, tetracycline, penicillin G, ampicillin, streptomycin, polymyxin B, vancomycin, chloramphenicol, rifampicin, and gentamicin) in this study, and five were sensitive to more than half of the antibiotics. Additionally, the cell surface hydrophobicity of seven of the 20 lactobacilli strains was above 70%, including strains Lactobacillus casei 1,133 (92%), Lactobacillus plantarum 1086-1 (82%), Lactobacillus casei 1089 (81%), Lactobacillus casei 1138 (79%), Lactobacillus buchneri 1059 (78%), Lactobacillus plantarum 1141 (75%), and Lactobacillus plantarum 1197 (71%). Together, these results suggest that these seven strains are good probiotic candidates, and that tolerance against bile acid, simulated gastric and intestinal juices, antimicrobial activity, antibiotic resistance, and cell surface hydrophobicity could be adopted for preliminary screening of potentially probiotic lactobacilli.

Isolation, Characterization, and Comparative Genomics of the Novel Potential Probiotics from Canine Feces

  • Ngamlak Foongsawat;Sirinthorn Sunthornthummas;Kwannan Nantavisai;Komwit Surachat;Achariya Rangsiruji;Siriruk Sarawaneeyaruk;Kedvadee Insian;Sirapan Sukontasing;Nuttika Suwannasai;Onanong Pringsulaka
    • 한국축산식품학회지
    • /
    • 제43권4호
    • /
    • pp.685-702
    • /
    • 2023
  • Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, co-aggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects on canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, L. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, L. fermentum Pom5 and P. pentosaceus Chi8 were identified as potential probiotic candidates for canines.