• Title/Summary/Keyword: antibiotic resistance genes

Search Result 221, Processing Time 0.025 seconds

Novel Strain Leuconostoc lactis DMLL10 from Traditional Korean Fermented Kimchi as a Starter Candidate for Fermented Foods

  • Yura Moon;Sojeong Heo;Hee-Jung Park;Hae Woong Park;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1625-1634
    • /
    • 2023
  • Leuconostoc lactis strain DMLL10 was isolated from kimchi, a fermented vegetable, as a starter candidate through safety and technological assessments. Strain DMLL10 was susceptible to ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, and tetracycline. It did not show any hemolytic activity. Regarding its phenotypic results related to its safety properties, genomic analysis revealed that strain DMLL10 did not encode for any toxin genes such as hemolysin found in the same genus. It did not acquire antibiotic resistance genes either. Strain DMLL10 showed protease activity on agar containing NaCl up to 3%. The genome of DMLL10 encoded for protease genes and possessed genes associated with hetero- and homo-lactic fermentative pathways for lactate production. Finally, strain DMLL10 showed antibacterial activity against seven common foodborne pathogens, although bacteriocin genes were not identified from its genome. These results indicates that strain DMLL10 is a novel starter candidate with safety, enzyme activity, and bacteriocin activity. The complete genomic sequence of DMLL10 will contribute to our understanding of the genetic basis of probiotic properties and allow for assessment of the effectiveness of this strain as a starter or probiotic for use in the food industry.

Comparison of Harboring the Resistance Gene and Disc Diffusion Susceptibility Test Result in Staphylococcus pseudintermedius from the Bacterial Dermatitis (세균성 피부염 개에서 분리된 Staphylococcus pseudintermedius에서 항생제 감수성 검사와 내성 유전자 획득의 비교)

  • Jang, Hye-Jin;Son, Hyoung-Won;Kang, Hyo-Min;Han, Jae-Ik;Na, Ki-Jeong
    • Journal of Veterinary Clinics
    • /
    • v.32 no.2
    • /
    • pp.158-161
    • /
    • 2015
  • Bacterial dermatitis is common disease that is necessary to treat with antibiotics. In recent, antibiotic-resistant bacteria is being increased in worldwide. The purpose of the present study was to evaluate the prevalence of resistant genes in Staphylococcus (S.) pseudintermedius isolated from dogs, and to compare the resistant gene profile with the result of antibiotic disc diffusion test. A total of seven S. pseudintermedius was included in the study. Bacterial identification was performed by 16S ribosomal RNA gene sequence analysis. S. pseudintermedius isolates had more than one antibiotic resistant gene (mecA, blaZ and aac(6')/aph(2"). While all isolates were PCR positive to blaZ gene, only two isolates were resistant to amoxicillin/clavulanate. Among five isolates harboring gentamicin resistance, one isolate was negative to aac(6')/aph(2")-targeted PCR. Taken together, the results suggest that resistant gene-targeted PCR and disc diffusion test are complementary to detect antibiotic resistance.

Rapid Detection of Vancomycin-resistance Enterococci by SYBR Green Real-time PCR

  • Yang, Byoung-Seon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.46 no.2
    • /
    • pp.64-67
    • /
    • 2014
  • Vancomycin-resistant Enterococci (VRE) are a leading cause of a nosocomial infection. While seven glycopeptide resistance genotypes have been found in Enterococci, vanA and vanB are the most common resistance genotypes. Aims of this study were to detect antibiotic susceptibilities of 23 Enterococcus spp, which broke out in a university hospital by the disk diffusion test, to investigate specific genes of vanA and vanB by conventional and real-time PCR. PCR for vanA and vanB was performed on 23 Enterococci, all 23 were positive for vanA type. This study reports the validation of a simple and rapid VRE detection method that can be easily incorporated into the daily routine of a clinical laboratory. Early detection of VRE strains, including those with susceptibility to Vancomycin, is of paramount clinical importance, as it allows a rapid initiation of strict infection control practices as well as a therapeutic guidance for a confirmed infection. The real-time PCR method is a rapid technique to detect vanA in Enterococci. It is simple and reliable for the rapid characterization of VRE.

Antimicrobial Resistance Patterns and Resistance genes assay of Shigella sonnei Isolated in Korea for Five Years (최근 5년 동안 국내에서 분리된 Shigella sonnei의 항균제 내성 유형과 내성유전자형 분석)

  • Huh, Wan;Lee, Sang-Jo;Kwon, Gi-Seok;Jang, Jong-Ok;Lee, Jung-Bok
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.31-39
    • /
    • 2007
  • This study has been carried out for investigating the relatedness of representative 135 Shigella sonnei strains isolated from 2000 to 2004 by using biotyping and antimicrobial resistance. All strains showed typical biochemical characterisics of Shigella strain. Among 135 strains,79 (58.5%) strains were biotype "g",54 (40.0%) strains were biotype "a" and 2 (1.5%) strains were biotype "e". The results of susceptibility test against 16 antimicrobial agents were like this. Most of strains were susceptible to AN, CIP, C and GM. 129 (95.6%) strains were resistant to SXT, 126 (93.3%) strains were resistant to TE and 122 (90.4%) strains were resistant to SM. One hundred thirty two (97.8%) strains were resistant to more than two antimicrobial agents. R28 type (antimicrobial resistance patterns 28: resistant to AM, SAM, TE, TIC, SXT, K, SM and AmC) were 42 strains (31.1%). The other strains were showed 33 kinds of R patterns. The results of $bla_{TEM}$, sulII, tetA and strA gene detection were coincided with phenotype of antimicrobial resistance by disk diffusion method. But some strains which had sulII and strA genes were not showed the resistance against SXT and SM.

Novel Qnr Families as Conserved and Intrinsic Quinolone Resistance Determinants in Aeromonas spp.

  • Sang-Gyu Kim;Bo-Eun Kim;Jung Hun Lee;Dae-Wi Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1276-1286
    • /
    • 2024
  • The environment has been identified as an origin, reservoir, and transmission route of antibiotic resistance genes (ARGs). Among diverse environments, freshwater environments have been recognized as pivotal in the transmission of ARGs between opportunistic pathogens and autochthonous bacteria such as Aeromonas spp. In this study, five environmental strains of Aeromonas spp. exhibiting multidrug resistance (MDR) were selected for whole-genome sequencing to ascertain their taxonomic assignment at the species-level and to delineate their ARG repertoires. Analyses of their genomes revealed the presence of one protein almost identical to AhQnr (A. hydrophila Qnr protein) and four novel proteins similar to AhQnr. To scrutinize the classification and taxonomic distribution of these proteins, all Aeromonas genomes deposited in the NCBI RefSeq genome database (1,222 genomes) were investigated. This revealed that these Aeromonas Qnr (AQnr) proteins are conserved intrinsic resistance determinants of the genus, exhibiting species-specific diversity. Additionally, structure prediction and analysis of contribution to quinolone resistance by AQnr proteins of the isolates, confirmed their functionality as quinolone resistance determinants. Given the origin of mobile qnr genes from aquatic bacteria and the crucial role of Aeromonas spp. in ARG dissemination in aquatic environments, a thorough understanding and strict surveillance of AQnr families prior to the clinical emergence are imperative. In this study, using comparative genome analyses and functional characterization of AQnr proteins in the genus Aeromonas, novel Aeromonas ARGs requiring surveillance has suggested.

Prevalence and antimicrobial resistance of Klebsiella species isolated from clinically ill companion animals

  • Lee, Dan;Oh, Jae Young;Sum, Samuth;Park, Hee-Myung
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.17.1-17.13
    • /
    • 2021
  • Background: Klebsiella spp. is an important conditional pathogen in humans and animals. However, due to the indiscriminate use of antibiotics, the incidence of antimicrobial resistance has increased. Objectives: The purpose of this study was to investigate antimicrobial resistance in strains of Klebsiella strains and the phylogenetic relatedness of extended-spectrum cephalosporin (ESC)-resistance among Klebsiella strains isolated from clinically ill companion animals. Methods: A total of 336 clinical specimens were collected from animal hospitals. Identification of Klebsiella species, determination of minimum inhibitory concentrations, detection of ESC resistance genes, polymerase chain reaction-based replicon typing of plasmids by conjugation, and multilocus sequence typing were performed. Results: Forty-three Klebsiella strains were isolated and, subsequently, 28 were identified as K. pneumoniae, 11 as K. oxytoca, and 4 as K. aerogenes. Eleven strains were isolated from feces, followed by 10 from ear, 7 from the nasal cavity, 6 from urine, 5 from genitals, and 4 from skin. Klebsiella isolates showed more than 40% resistance to penicillin, cephalosporin, fluoroquinolone, and aminoglycoside. ESCresistance genes, CTX-M groups (CTX-M-3, CTX-M-15, and CTX-M-65), and AmpC (CMY-2 and DHA-1) were most common in the K. pneumoniae strains. Some K. pneumoniae carrying CTX-M or AmpC were transferred via IncFII plasmids. Two sequence types, ST709 and ST307, from K. pneumoniae were most common. Conclusions: In conclusion, this is the first report on the prevalence, ESCresistance genotypes, and sequence types of Klebsiella strains isolated from clinically ill companion animals. The combination of infectious diseases and antimicrobial resistance by Klebsiella in companion animals suggest that, in clinical veterinary, antibiotic selection should be made carefully and in conjunction with the disease diagnosis.

Characterization of Antibiotic Resistance of Aeromonas spp. and Pseudomonas spp. Isolated from Domestic Aquatic Animals (국내 수산생물로부터 분리된 Aeromonas spp. 및 Pseudomonas spp.의 항생제 내성에 관한 특성 분석)

  • Ye Ji Kim;Lyu Jin Jun;Young Juhn Lee;Ye Jin Ko;Yeong Eun Oh;Soo Ji Wo;Myoung Sug Kim;Joon Bum Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.388-400
    • /
    • 2023
  • Aeromonas spp. and Pseudomonas spp. are opportunistic pathogens widely distributed in the aquatic environment. To test the antibiotic susceptibility, the MIC of the 18 antibiotics mainly used in aquaculture were measured. Aeromonas spp. and Pseudomonas spp. straoms had different resistance patterns against most antibiotics. The MIC of tetracycline for four Aeromonas spp. strains (10.5%) was < 0.25 ㎍/mL. However, 0.5-4 ㎍/mL tetracycline inhibited most Pseudomonas spp. strains. The tet resistance performance of 14 genes including tet(B), tet(E), and tet(M) were investigated. Investigating, the tetracycline resistance gene of 38 Aeromonas spp. strains detected tet(A) in 21 strains (55.3%). Two Pseudomonas spp. strains showed high MIC values and no inhibition zone. tet gene analysis detected tet(D) in only one strain (5%).

Matrix Attachment Regions (MARs) as a Transformation Booster in Recalcitrant Plant Species

  • Han, Kyung-Hwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.4
    • /
    • pp.225-231
    • /
    • 1997
  • For genetic engineering to be commercially viable, an efficient transformation system is needed to produce transgenic plane from diverse genotypes ("generalized protocol"). Development of such a system requires optimization of a number of components such as gene transfer agent, plant tissues competent for both regeneration and transformation, and control of transgene expression. Although several novel gene transfer methods have been developed for plane, a majority of stably transformed plane express the introduced genes at low levels. Moreover, silencing of selectable marker genes shortly after their incorporation into plant chromosomes may result in low recovery of transgenic tissues from selection. Matrix attachment regions (MARs) are DNA sequences that bind to the cell's proteinaceous nuclear matrix to form DNA loop domains. MARs have been shown to increase transgene expression in tobacco cells, and reduce position in mature transgenic plants. Flanking an antibiotic resistance transgene with MARs should therefore lead to improved rates of transformation in a diversity of species, and may permit recalcitrant species and genotypes to be successfully transformed. Literature review and recent data from my laboratory suggest that MARs can serve as a transformation booster in recalcitrant plant species.

  • PDF

Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials

  • Bogun Kim;Kiyeop Kim;Xiaoyue Xu;Hyunju Lee;Duleepa Pathiraja;Dong-June Park;In-Geol Choi;Sejong Oh
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1341-1344
    • /
    • 2023
  • In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications.

Distribution of Tetracycline Resistance Genes in Pathogenic Bacteria Isolated from Cultured Olive Flounder (Paralichthys olivaceus) in Jeju in 2016 (2016년도 제주지역 양식 넙치(Paralichthys olivaceus)에서 분리된 어병세균의 tetracycline 내성유전자 분포)

  • LEE, Da-Won;JUN, Lyu-Jin;JEONG, Joon-Bum
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.834-846
    • /
    • 2017
  • Aquaculture practices to ensure greater production, such as high density breeding and excessive feeding, are become stressors that raise the prevalence of diseases. Accordingly, increasingly large volumes of antibiotics are used more frequently each year. Long term use antibiotics can generate resistant bacteria, which interrupt treatments and cause a potential transfer to human bodies. Thus, antibiotic resistance is of importance in public health. Tetracycline (Tc) is one of the typical medicines used in the aquaculture drugs, which has a wide range of application including gram-positive and gram-negative bacteria. In the examination of 153 strains isolated from olive flounder (Paralichthys olivaceus) farms located in Jeju in 2016, it turned out that a total of 84 strains were resistant to Tc or oxytetracycline (OTC). The extent to which the strains are resistant to Tc and OTC was confirmed through MIC test, mostly within the range of 25 to $100{\mu}g/m{\ell}$. Twelve different types of tet genes were detected using single and multiplex PCR in the 84 Tc-resistant strains. The PCR was used to find tet(K), tet(M), tet(O), and tet(S), which are known to exist primarily in gram positive strains. According to the results, - tet(S) is the most dominant gene in 49 strains of Streptococcus parauberis, accounting for 63.2%. And there were two strains that have two different types of resistant genes. The multiplex PCR was used to detect tet(A), tet(B), tet(C), tet(D), tet(E), and tet(G), which are commonly found in gram-negative strains. Each of tet(B), tet(D), and tet(B)&(M) was found in a strain presumed to be Vibrio sp., and only tet(D) was found in 10 Edwardsiella tarda strains.