• Title/Summary/Keyword: anti-windup control

Search Result 87, Processing Time 0.021 seconds

A Study on the Bucket Tip's Position Control for the Intelligent Excavation System (지능형 굴삭 시스템의 버킷 끝단 위치제어에 관한 연구)

  • Kim, K.Y.;Jang, D.S.;Ahn, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.5 no.4
    • /
    • pp.32-37
    • /
    • 2008
  • For the bucket tip position control of the excavator, a traditional hydraulic excavator system was exchanged into an electro-hydraulic one. EPPR valves are attached to the traditional MCV and hydraulic joysticks are replaced by electronic ones to develop the electro-hydraulic system. To control the electronic pump with a good performance, the control logic for the pump is deduced from the AMESim simulation and the experimental method on the test bench. To get a good position control performance of the excavator bucket tip, PI+AntiWindup controller is selected as a position controller. The experimental results showed the good controllability for the electro-hydraulic excavator system on the test bench.

  • PDF

Control of Discrete-time Saturating Systems by using Feedback Compensation Matrix (되먹임 보상 행렬을 이용한 이산 포화 시스템의 제어)

  • 박종구;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.447-457
    • /
    • 1994
  • This paper presents a compensation method for discrete-time control systems with saturation nonlinearities to cope with the reset windup phenomena. The proposed ARW (Anti-Reset Windup) method is motivated by the concept of the equilibrium point. The design parameter of the ARW scheme is explicitly derived by minimizing a reasonable performance index. The resulting dynamics of the compensated controller exhibits the reduced model form of the unsaturated system which can be obtained by the singular perturbational model reduction method. An example is given to illustrate the effectiveness of the proposed method.

Speed Control of Permanent Magnet Synchronous Motor for Elevator (엘리베이터구동용 영구자석형 동기전동기의 속도 제어)

  • Won, Chung-Yuen;Yu, Jae-Sung;Kim, Jin-Hong;Jun, Bum-Su;Hwang, Sun-Mo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.74-82
    • /
    • 2004
  • This paper describes the speed control of the surface-mounted permanent-magent synchronous motors (SMPMSNM) for elevator drive. The elevator motor needs to be a compact and slim type. Essentially, the proposed scheme uses a vector control algorithm for a speed and torque control and Anti-windup technique is adopted to prevent a windup phenomenon. This system is implemented using a high speed 32-bit DSP (TMS320C31-50), a high-integrated logic device FPGA(EPF10K10TI144-3) to design compactly and inexpensively. The proposed scheme is verified by the results through digital simulation and experiments for a three-phase 13.3[kW] SMPMSM as a MRL(MachineRoomLess) elevator motor in the laboratory.

A Study on the Flux Estimation Simulator Application for the Induction Motor Speed Control (속도제어를 위한 유도전동기 자속추정 시뮬레이터 적용에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Gi-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1289-1301
    • /
    • 2011
  • In this paper, flux estimation method at the Induction motor is applied to stability flux estimate of possibility in overall speed domain. angle operation has voltage and current and speed information using the Induction motor direct control method. Induction motor direct control is material to flux information. Exact flux estimation method to using current model flux estimator of low-speed domain and voltage model flux estimator of high-speed domain. Speed and current and flux controller using PI controller. And error of integral requital for add to Anti-Windup PI controller. Verified to performance of Current model Flux controller and voltage model flux controller using Matlab / Simulink. Analysis has parameter influence of direct vector control and indirect vector control at the Induction motor vector control. So, verified to minute control. Analyzed to simulation result and proof to validity of presented algorithm.

Dynamic Compensation Method for State Delayed Control Systems with Input Saturation (입력제한이 존재하는 상태지연 시스템의 동적보상방법)

  • Park, Jong-Koo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.325-331
    • /
    • 2001
  • A dynamic anti-windup method for state delayed control systems with input saturation is considered. Under the assumption that a linear controller has been designed for a state delayed control system based on the existing design technique which shows desirable nominal performance, an additional compensator is incorporated to provide a graceful performance degradation despite of input saturation. By regarding the difference of the controller states in the absence and presence of input saturation as an objective function, the dynamic compensator which minimizes it is determined explicitly. The proposed dynamic compensator is the closed form of plant and controller parameters. The proposed method not only provides graceful performance degradation, but it also guarantees the total stability of resulting systems. An illustrative example is provided to show the effectiveness of the proposed method.

  • PDF

Modified Time Delay Control for Servo with Friction (마찰이 있는 서보의 변형된 시지연제어)

  • Park, J.H.;Kim, Y.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.106-113
    • /
    • 1997
  • A new algorithm based upon TDC (Time Delay Control) is proposed to improve the robustness of TDC performance in systems where the stick-slip friction is strong. Experiments were performed at the different levels of friction. The reponses of the TDC and the modified TDC were compared each other, and against those of a PID controller with an anti-windup. The results show that the TDC and the modified TDC equally perform better than the PID, and that the modified TDC performs consistently well even with variations in the friction level while the TDC does not.

  • PDF

Neutral Point Voltage Control for Grid-Connected Three-Phase Three-Level Photovoltaic Inverter (계통연계형 3상 3레벨 태양광 인버터의 중성점 전압제어)

  • Park, Woonho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.72-77
    • /
    • 2015
  • Three-level diode clamped multilevel inverter, generally known as neutral point clamped (NPC) inverter, has an inherent problem causing neutral point (NP) potential variation. Until now, the NP potential problem of variation has been investigated and lots of solutions have also been proposed. This paper presents a neutral point voltage control technology using the anti-windup PI controller and offset technology of PWM (Pulse Width Modulation) to control the variation of NPC 3-phase three-level inverter neutral point voltage. And the proposed algorithm is tested and verified using a PLL (Phase Locked Loop) in order to synchronize the phase voltage from the line voltage of grid. It significantly improves the voltage balancing under a solar fluctuation conditions of the inverter. Experimental results show the good performance and effectiveness of the proposed method.

Anti-Windup Starting-Time Control Strategy for a First-Order-Plus-Dead-Time Model and Application of Extruder Temperature Control

  • Onogaki, Hitoshi;Yokoyama, Shuichi;Hamane, Hiroto;Kanouya, Kazuyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.70.4-70
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ PID Control and Two-Degree-Of-Freedom Control $\textbullet$ Switching Actuating Value By the 100% Actuating Value $\textbullet$ Application of Extruder Temperature Control $\textbullet$ Conclusion

  • PDF

An Improved Bumpless Transfer by Solving the Input Discrepancy Problem (입력 불일치 해소에 의한 개선형 무충돌전환)

  • Kim, Tae-Shin;Yang, Ji-Hyuk;Kwon, Tae-Wan;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.10
    • /
    • pp.982-987
    • /
    • 2009
  • On the controller switching time, even though on-line/off-line controller outputs are the same, a problem which deteriorates the performance of bumpless transfer can happen in case that any discrepancy between the two controller inputs is transferred directly to the controller output. In this paper, we analyze the cause of that phenomenon in existing research results and propose a new method which improves that problem. In order to solve this problem, the off-line controller is augmented to an anti-windup structure and an improved bumpless transfer method is derived by using the changed input of the off-line controller instead of the plant input. We exemplify the performance of the proposed method by comparing with the performance of the existing method via numerical examples.

EA-Based Tuning of the PID Controller for a CSTR (CSTR용 PID 제어기의 EA 기반 동조)

  • Jin, Gang-Gyoo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.330-336
    • /
    • 2014
  • Many industrial processes such as continuous stirred tank reactors(CSTRs), desalination plant, distillation columns, pH neutralization processes and so on exhibit highly nonlinear characteristic and time-varying behavior during operation. The control of such processes has been challenging to control engineers. Hence, a variety of forms of PID controllers and their tuning rules for industrial processes have been developed to guarantee the best performance. In this paper, a scheme that designs the practical PID controller with an anti-windup strategy incorporating with an evolutionary algorithm(EA) is presented for the concentration control of a nonisothermal CSTR. EA is used to tune the parameters of the overall PID control process with anti-windup by minimizing the integral of absolute error(IAE). Simulation works for reference tracking and disturbance rejecting performances and robustness to parameter changes show the feasibility of using the proposed method.