• Title/Summary/Keyword: anti-vibration

Search Result 313, Processing Time 0.021 seconds

Analysis of Mount Reaction Forces for Powertrain Mounting Systems using Nonlinear Characteristics (비선형 특성을 적용한 파워트레인 마운팅 시스템의 마운트 전달력 해석)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • The primary objective of this study is to truly understand reaction force be due to engine exciting force. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand reaction force was applied MSC.Nastran software. Analyzed frequency response analysis of powertrain mount system. First, engine exciting force was applied field function. Also nonlinear characteristics was applied field function : such as dynamic spring constant and loss factor. And nonlinear characteristics was applied CBUSH. Generally characteristics of rubber mount is constant frequency. But characteristics of hydraulic mount depend to frequency. Therefore nonlinear characteristics was applied. Powertrain mounting system be influenced by powertrain specification, mount position, mount angle and mount characteristics etc. In this study, we was analyzed effects of powertrain mounting system. And we was varied dynamics spring constant and loss factor of mounts.

  • PDF

A HDD Latch Design Using Electro-magnetic Force of VCM Actuators (VCM 액추에이터의 전자기력을 이용한 HDD 래치 설계)

  • Kim, Kyung-Ho;Oh, Dong-Ho;Shin, Bu-Hyun;Lee, Seung-Yop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.788-794
    • /
    • 2009
  • Various types of latch designs for hard disk drives using load/unload mechanism have been introduced to protect undesired release motions of a voice coil motor(VCM) actuator from sudden disturbances. Recently, various inertia-type latches have been widely used because locking performance is better than that of other types of latch. However there has been a limit in the inertia type in order to guarantee perfect latch and unlatch operations because of changes in latch/unlatch conditions due to mechanical tolerance and temperature-dependent friction. In this paper, a reliable and robust magnetic latch mechanism is proposed through only simple modifications of coil and yoke shapes in order to overcome the mechanical limit of current inertia-type latches. This new magnetic latch does not have only a simple structure but it also ensures reliable operations and anti-shock performance. The operating mechanism of the proposed latch is theoretically analyzed and optimally designed using an electromagnetic simulation.

Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads

  • Sharma, R.K.;Domala, V.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.369-390
    • /
    • 2019
  • Herein, we present numerical simulation based model to study the use of a 'Tuned Mass Damper (TMD)' - particularly spring mass systems - to control the displacements at the deck level under seismic and ice loads for an offshore jacket structure. Jacket is a fixed structure and seismic loads can cause it to vibrate in the horizontal directions. These motions can disintegrate the structure and lead to potential failures causing extensive damage including environmental hazards and risking the lives of workers on the jacket. Hence, it is important to control the motion of jacket because of earthquake and ice loads. We analyze an offshore jacket platform with a tuned mass damper under the earthquake and ice loads and explore different locations to place the TMD. Through, selected parametric variations a suitable location for the placement of TMD for the jacket structure is arrived and this implies the design applicability of the present research. The ANSYS*TM mechanical APDL software has been used for the numerical modeling and analysis of the jacket structure. The dynamic response is obtained under dynamic seismic and ice loadings, and the model is attached with a TMD. Parameters of the TMD are studied based on the 'Principle of Absorption (PoA)' to reduce the displacement of the deck level in the jacket structure. Finally, in our results, the proper mass ratio and damping ratios are obtained for various earthquake and ice loads.

Flutter Mechanism Analysis for Firefly Export Model (반디호 수출형 시제기에 대한 플러터 매커니즘 분석)

  • Paek, Seung-Kil;Lee, Sang-Wook
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.35-44
    • /
    • 2007
  • In this study was made the flutter analysis for the export model of Firefly(Bandi-ho), the small canard aircraft. Stiffness model based on internal load generation finite element model was generated. Mass model based on the weight DB for weight control was generated. Aerodynamic model based on Doublet Lattice Method was generated. Preliminary flutter analysis was made. Based on it, major vibration modes are identified and experimentally obtained via the ground vibration test. The obtained normal mode frequencies were used to correlate the finite element model. Flutter analysis was made again and major flutter mechanisms were summarized. The most important flutter root was identified as a coupled root between rigid body roll mode and anti-symmetric wing pitching mode.

  • PDF

Numerical Analysis of Free Vibration of Parabolic Arches with Hinged Ends (양단(兩端)힌지 포물선(抛物線)아치의 자유진동(自由振動)에 관한 연구(研究))

  • Hwang, Hak Joo;Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.69-77
    • /
    • 1984
  • In this paper, the governing differential equations for the free vibration of uniform parabolic arches are derived on the basis of equilibrium equations of a small element of arch rib and the D'Alembert principle. A trial eigen value method is used for determining the natural frequencies and mode shapes. And the Runge-Kutta fourth order integration technique is also used in this method to perform the integration of the differential equations. A detailed study is made of the first mode for the symmetrical and anti-symmetrical vibrations of hinged arches with the Span length equal to 10 m. The effects of the rise of arch, the radius of gyration and the rotary inertia on free vibrations are presented in detail in curves and table.

  • PDF

Development of 1-axis Exciter for a Seat Vibration Test of Agricultural Tractors(I) - Design of PID Controller for Position Control of 1-axis Exciter - (농용트랙터용 운전자 좌석 진동 시험을 위한 1축 가진 시험기 개발(I) - 1축 가진 시험기 위치 제어를 위한 PID 제어기 설계 -)

  • Yu, Ji-Hoon;Choi, Young-Kyun;Lee, Kyu-Cheol;Kim, Young-Joo;Ryu, Young-Sun;Ryuh, Kwan-Hee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.305-314
    • /
    • 2009
  • The purpose of this paper was to design an effective control system of 1-axis exciter for a seat vibration test of agricultural tractors using MATLAB simulation. The developed simulation model was composed with a hydraulic pump, a hydraulic servo valve, a hydraulic cylinder and load system. Also it was verified by comparing the simulation results with experimental results of actual control system in order to optimize the control performance. And in order to improve its control performance, the designed PID controller in this research was tuned using Ziegler-Nichols 2nd law and zero's moving method of PID controller's transfer function. As the result of these research, the developed position control system was able to control the system's position accurately within 5% errors.

Internal Aerodynamic Noise from Quick Opening Throttle Valve (쓰로틀 밸브의 빠른 열림 동작에 의한 내부공력소음)

  • 정철웅;김성태;김재헌;이수갑
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.310-318
    • /
    • 2004
  • For many industrial problems originating from aerodynamic noise, noise prediction techniques, reliable and easy to apply, would be of great value to engineers and manufacturers. General algorithm is presented for the prediction of internal flow-induced noise from quick opening throttle valve in an automotive engine. This algorithm is based on the integral formula derived by using the General Green Function, Lighthill's acoustic analogy and Curle's extension of Lighthill's. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve show good agreement with actual measurements. The results show that the dipole noise is dominant in this phenomena and the origin of noise sources is attributed to the anti-vortex lines formed in the down-stream from a throttle valve. This illustrative computation shows that the current method permits generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.

A Study on Testing of 1/4-scale and Full-size Seismic Isolation Bearings (축소모델과 실모델 면진베어링의 성능실험에 관한 연구)

  • 정민기;정지만;김두훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.194-202
    • /
    • 1996
  • An approach to increase the seismic resistance of large structures is to reduce the seismic forces, to which structures are subjected by base isolation systems. The anti-seismic performance of base-isolated beatings has been verified experimentally by shaking table tests. However, it may be difficult to perform the tests for the full-scale beatings of base-isolated structures. Therefore, the test program was designed to evaluate the reliability and properties of the beatings under a range of loading conditions including axial stress, loading frequency and direction, and temperature. The effects of scale were also evaluated by comparing the results of the 1/4-scale beatings with those from the full-scale bearings, and the ultimate behavior of both types of bearings with evaluated through a series of roll-out tests. This report draws comparisons among the different tests and bearings to determine the importance of various factors including load history, axial stress, and frequency. Comparisons between the 1/4-scale bearings were difficult because of the scaling effects in manufacturing and thermal radiation, but qualitative results from the 1/4-scale bearings can certainly be extrapolated the full-scale bearings.

  • PDF

Corrosive Wear of Alloy 690 Tubes in Alkaline Water

  • Hong, Seung Mo;Jang, Changheui;Kim, In Sup
    • Corrosion Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.126-131
    • /
    • 2009
  • The interaction between wear and corrosion can significantly increase total material losses in water chemistry environment. The corrosive wear tests of a PWR steam generator tube material (Alloy 690) against the anti vibration bar material (409 SS) were performed at room temperature. The tests were performed in alkaline water chemistry conditions. NaOH solution was selected for test condition to investigate the corrosive wear effect of steam generator tube material in alkaline pH condition without other factors. The flow induced vibration can caused tube damage and the corrosion can be occurred by water chemistry. The test results showed that, in the alkaline solution at pH 13.9, the corrosion current density was increased about ten times than that in the distilled water. And wear rate at pH 13.9 was increased about ten times from that at neutral condition. However, the wear rate was decreased with time. The decrease would be attributed to the change in roughness of specimen or sub-layer of the worn surface with time. From microstructure observation, severe abrasive shape and several wear debris were found. From those results, it could infer that the oxide film on Alloy 690 changed to easily breakable one in the alkaline water, and then abrasion with corrosion became the main wear mechanism.

Development of Drilling Center Column made of Epoxy-granite Material and Experimental Study on it's Structural Characteristics (드릴링 센타용 애폭시-그래나이트재 컬럼의 개발과 구조물 특성 실험)

  • Won, S.T.;Kim, J.H.;Lee, H.W.;Maeng, H.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.87-96
    • /
    • 1995
  • A new fungivle material named Epoxy-Granite composite is applied to the column structure of drilling center in order to investigate the advanced dynamic charateristics comparing with a conventional cast iron material. The dimensions of new column structure are adjusted to keep the same stiffness (EI value) and the manufacturing conditions are formulated based on the preceeding research experience about the development of Epoxy-Granite structural material. The two kinds of experiments are set up, one of which is for the measurement of natural mode and frequency using experimental modal analysis, and the other one is for the measurement of vibration amplitude during idling operation of a machine tool. The comparison of maximum accelerance values at each natural frequency of bending mode shows a Epoxy-Granite column have larger modal damping ratios(over 2times) than a cast iron column. The vibration amplitude of Epoxy-Granite column measrued on the bed, motor base, and top of column are also much smaller (up to 12%) than the case of cast iron column. It is therefore confirmed that a Epoxy-Granite material exhibits a good anti- vibrational propderty even if it is used under the actual operational environments of machine tool as a practical structural element.

  • PDF