• Title/Summary/Keyword: anti-tumorigenic effect

Search Result 19, Processing Time 0.029 seconds

Synergistic Effect of Yuza(Citrus junos) Extracts and Ascorbic Acid on Antiproliferation of Human Cancer Cells and Antioxidant Activity (비타민 C가 첨가된 유자 추출물의 항산화능과 암세포 증식억제 상승효과)

  • Shon, Mi-Yae;Park, Seok-Kyu
    • Food Science and Preservation
    • /
    • v.13 no.5
    • /
    • pp.649-654
    • /
    • 2006
  • To enhance beneficial effects of citron fruits, anticancer and antioxidant activities of citron fruits extracts were assessed with or without ascorbic acid. Total phenolic acids and flavonoids of fruits peels and flesh extracts were determined. Fruits peels contained more phenolic acids and flavonoids than those detected in flesh extracts. Scavenging activities of 1,1-diphenyl-2-picrylhydrazyl radicals and reducing powers were increased depending on the concentration. The antioxidant activities on oxidation of linoleic acid emulsion incubated at $50^{\circ}C$ were increased but the effect was small to that of butylated hydroxy toluene and ascorbic acid. The anti-tumorigenic effect of these compounds were investigated. They were shown to inhibit the in vitro proliferation of four human tumorigenic cell lines, HT-29, MCF-7, DU-145 and HepG2, in a doso-dependent manner. This study demonstrated that the antioxidant and anticancer activities of citron fruits extracts were derived from their phenols and flavonoids.

Genotoxicity Studies of the Complex of Acriflavine and Guanosine (Acriflavine과 Guanosine 복합체(AG60)의 유전독성시험)

  • 정영신;홍은경;김상건;안의태;이경영;강종구
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.2
    • /
    • pp.106-111
    • /
    • 2002
  • AG6O, the complex of acriflavine and guanosine, has been shown to possess the synergistic antitumorigenic activity in the previous paper (J. Pharm. Pharmacol. 1997, 49:216). In this study, we have investigated the genotoxic properties of AG60 using in vitro and in vivo system such as Ames bacterial reversion test, chromosomal aberration assay and micronucleus assay. In Ames reverse mutation test, AG60 treatment at the dose range up to 250 $\mu\textrm{g}$/plate caused the dose-independent random induction of the mutagenic colony formation in S. typhimurium TA98, TA100, TA1537, and E. coli WP2uvrA, while any mutagenic effect of AG60 wasn't observed in S. typhimurium TA1535. Any significant chromosomal aberration wasn't observed in chinese hamster lung (CHL) fibroblast cells incubated with PBS or AG60 at the concentrations of 2.5, 5, 10 $\mu\textrm{g}$/$m\ell$ for 24 hours without but even with 59 metabolic activation system for 6 hours. In vivo ICR mice, the intramuscular injection of AG60 at the doses of 7.15, 14.3, and 28.6 mg/kg did not induce the frequency of micronucleus formation. However, mitomycin C, as one of the positive controls at the dose of 2 mg/kg caused the 8.4% induction in the frequency of micronucleus and 24% increase in the chromosomal aberration.

  • PDF

Clematis chinensis suppresses lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 in mouse BV2 microglial cells

  • Chun, Hae-Jin;Lee, Choong-Yeol;Lee, Jin-Woo;Sung, Yun-Hee;Kim, Sung-Eun;Kim, Young-Sick;Shin, Mal-Soon;Kim, Chang-Ju;Lee, Hye-Jung;Kim, Dong-Hee
    • Advances in Traditional Medicine
    • /
    • v.10 no.3
    • /
    • pp.214-221
    • /
    • 2010
  • Clematis chinensis is the root of Clematis chinensis OSBECK and is classified in Ranunculaceae. Clematis chinensis is a traditional medicinal herb possesses analgesic, diuretic, anti-tumorigenic, and anti-inflammatory effects. In this study, the effect of aqueous extract of Clematis chinensis against lipopolysaccharide-induced inflammation was investigated in mouse BV2 microglial cells. The aqueous extract of Clematis chinensis at the respective concentration was treated one hour before the lipopolysaccharide treatment in mouse BV2 microglial cells. From the present results, pre-treatment with the aqueous extract of Clematis chinensis suppressed prostaglandin E2 synthesis and nitric oxide production by inhibiting on the lipopolysaccharide-stimulated cyclooxygenase-2 and inducible nitric oxide synthase expressions in mouse BV2 microglial cells. The present study suggests that Clematis chinensis may offer a valuable mean of therapy for brain inflammatory diseases.

Desmarestia tabacoides Ameliorates Lipopolysaccharide-induced Inflammatory Responses via Attenuated TLR4/MAPKs/NF-κB Signaling Cascade in RAW264.7 Cells (RAW 264.7 세포에서 담배잎산말의 TLR4/MAPKs/NF-κB 신호전달체계 조절을 통한 항염증 효과)

  • Hyun-Seo Yoon;Hyun An;Chung Mu Park
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2023
  • Desmarestia tabacoides Okamura is a brown macroalgae that is found worldwide. Although several genera of Desmarestia have been reported as having anti-tumorigenic, anti-melanogenic, and photoprotective properties, the anti-inflammatory activity of D. tabacoides Okamura has not yet been evaluated. In this study, we analyzed the anti-inflammatory mechanisms of D. tabacoides Okamura ethanol extract (DTEE) via the inhibition of nitric oxide (NO) and prostaglandin (PG) E2 production and the expression of their corresponding enzymes, inducible NO synthase (iNOS), and cyclooxygenase (COX)-2. In addition, their upstream signaling molecules were evaluated by Western blot analysis, such as nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and phosphoinositide-3-kinase (PI3K)/Akt, in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The DTEE treatment significantly inhibited LPS-induced NO and PGE2 production as well as the expression of their corresponding enzymes, iNOS, and COX-2 without cytotoxicity. The stimulated transcription factor NF-κB and upstream signaling molecules extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 were attenuated by the DTEE treatment, which was statistically significant, while Akt did not provide any inhibitory effect. Moreover, the DTEE treatment significantly mitigated the LPS-activated adaptor molecules, toll-like receptor 4 (TLR4), and myeloid differentiation primary response 88 (MyD88) in the RAW 264.7 cells. These results suggest that DTEE attenuates TLR4-mediated inflammatory responses by inhibiting NF-κB activation and suppressing MAPK phosphorylation in LPS-stimulated RAW 264.7 cells.

Growth characters and harvest time for the artificial cultivation of Mycoleptodonoides aitchisonii (침버섯 인공재배 생육 특성과 수확 최적 시기)

  • Kim, Young;Jung, Bo-Mi;Wi, An-Jin;Park, Whoa-Shig;Bang, Mi-Ae;Park, Dae-Hun;Seo, Joung-Wook;Oh, Deuk-Sil
    • Journal of Mushroom
    • /
    • v.13 no.2
    • /
    • pp.114-118
    • /
    • 2015
  • Mycoleptodonoides aitchisonii has been used a culinary material and traditional medicine for a long time in worldwide and recently the researches to find biological effects have been increased such as dopamine activation, preventive effect against phytopathogens, inhibitive effect against erythrocyte coagulation, anti-oxidative effect, anti-tumorigenic effect, etc. However it is hard to cultivate Mycoleptodonoides aitchisonii it is impossible to be mass-produced and in order to solve the problem in this study we found the appropriate cultivation period and the harvest point for it. For life cycle (from primordium formation to harvest) the morphology, weight, and quantity of polysaccharide of Mycoleptodonoides aitchisonii were measured using with 5 bodies per a day and it could be divided for 4 stages; primordium formation, growth, needle maturation, and aging. And then from the results the Zeide nonlinear growth curve could be gotten. At 13th day after cultivation there is the relation between the change of media weight and body weight and at 14th day after cultivation the rate of polysaccharide in the body was 11 %. However in the case of O2 insufficient supply the malformation of them was observed.

Anti-tumorigenic Effects of Angelica gigase Nakai Extract on MBA-MB-231 through Regulating Lats1/2 Activation (유방암세포에서 LATS1/2 활성에 의한 당귀 추출물의 항암효과)

  • Kim, Cho-Long;Kim, Nambin;Jeong, Han-Sol;Shin, Yu-Su;Mo, Jung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.34 no.4
    • /
    • pp.177-183
    • /
    • 2020
  • The Hippo-YAP signaling pathway is critical for cell proliferation, survival, and self-renewal in both Drosophila and mammals. Disorder of Hippo-YAP pathway leads to tumor development, progression and poor prognosis in various cancers. YAP/TAZ are the key downstream effectors of the Hippo pathway and they can be inhibited through LATS1/2, core kinases in the Hippo pathway, mediated phosphorylation. In this study, we investigated the effect of Angelica gigas Nakai extract (AGNE) on Hippo-YAP/TAZ pathway. First, ANGE induced YAP/TAZ phosphorylation and dissociation of the YAP/TAZ-TEAD transcription complex. By qRT-PCR, we found that ANGE inhibits the expression of YAP/TAZ-TEAD target gene, CTGF and CYR61. In addition, the transcriptional activity of YAP/TAZ was not suppressed significantly in LATS1/2 double-knockout (DKO) cells by ANGE compared to LATS1/2 wild-type (WT) cells, which means AGNE inhibits YAP/TAZ signaling through direct action on LATS1/2. Further, it was confirmed that AGNE-induced activation of LATS1/2 inhibited the migration potential of the vector-expressing cells by suppressing YAP/TAZ activity. The reduced migration potential was restored in active YAP-TEAD expressing cells. Taken together, the results of this study indicate that ANGE downregulates YAP/TAZ signaling in cells through the activation of LATS1/2.

Establishment of an Allo-Transplantable Hamster Cholangiocarcinoma Cell Line and Its Application for In Vivo Screening of Anti-cancer Drugs

  • Puthdee, Nattapong;Vaeteewoottacharn, Kulthida;Seubwai, Wunchana;Wonkchalee, Orasa;Keawkong, Worasak;Juasook, Amornrat;Pinloar, Somchai;Pairojkul, Chawalit;Wongkham, Chaisiri;Okada, Seiji;Boonmars, Thidarut;Wongkham, Sopit
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.711-717
    • /
    • 2013
  • Opisthorchis viverrini (O. viverrini) is a well-known causative agent of cholangiocarcinoma (CCA) in humans. CCA is very resistant to chemotherapy and is frequently fatal. To understand the pathogenesis of CCA in humans, a rodent model was developed. However, the development of CCA in rodents is time-consuming and the xenograft-transplantation model of human CCA in immunodeficient mice is costly. Therefore, the establishment of an in vivo screening model for O. viverrini-associated CCA treatment was of interest. We developed a hamster CCA cell line, Ham-1, derived from the CCA tissue of O. viverrini-infected and N-nitrosodimethylamine-treated Syrian golden hamsters. Ham-1 has been maintained in Dulbecco's Modified Essential Medium supplemented with 10% fetal bovine serum for more than 30 subcultures. These cells are mostly diploid (2n=44) with some being polyploid. Tumorigenic properties of Ham-1 were demonstrated by allograft transplantation in hamsters. The transplanted tissues were highly proliferative and exhibited a glandular-like structure retaining a bile duct marker, cytokeratin 19. The usefulness of this for in vivo model was demonstrated by berberine treatment, a traditional medicine that is active against various cancers. Growth inhibitory effects of berberine, mainly by an induction of G1 cell cycle arrest, were observed in vitro and in vivo. In summary, we developed the allo-transplantable hamster CCA cell line, which can be used for chemotherapeutic drug testing in vitro and in vivo.

Inhibition of Melanogenesis by Ramalin from the Antarctic Lichen Ramalina terebrata (남극 지의류 Ramalina terebrata로부터 분리된 라말린의 미백효과)

  • Chang, Yun-Hee;Ryu, Jong-Seong;Lee, Sang-Hwa;Park, Sun-Gyoo;Bhattarai, Hari Datta;Yim, Joung-Han;Jin, Moo-Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.3
    • /
    • pp.247-254
    • /
    • 2012
  • Ramalin (${\gamma}$-glutamyl-N'-(2-hydroxyphenyl)hydrazide) isolated from the Antarctic lichen Ramalina terebrata has been shown to have strong antioxidant activities in the previous study. To investigate additional activities of ramalin, we studied the effects of ramalin on melanogenesis in melan-a cells, a non-tumorigenic melanocyte cell line. At a non-cytotoxic concentration, ramalin dramatically decreased melanin synthesis in melan-a cells in a dose-dependent manner, which was more potent than arbutin, a well-known tyrosinase inhibitor. Ramalin inhibited cell-free tyrosinase activity directly and intracellular tyrosinase activity as well. Its inhibitory mechanisms on melanin production were further assessed, and we found that ramalin significantly decreased the protein levels of melanogenic enzymes such as tyrosinase, tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). However, the mRNA levels of these enzymes were not altered. In a clinical study, application of 0.2 % ramalin on human skin significantly improved the degree of skin brightness after 3 weeks. In conclusion, ramalin has strong anti-melanogenic activity that is exerted both by the direct inhibition of tyrosinase activity and by down-regulation of melanogenic proteins. Furthermore, ramalin showed skin brightening effect in a clinical study. Collectively, these results suggest that ramalin may be a useful inhibitor for melanogenesis in skin.

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells (암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석)

  • Kim, Jong-Myung;Yu, Ji-Min;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.631-646
    • /
    • 2011
  • Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.