• 제목/요약/키워드: anti-neuroinflammation

검색결과 72건 처리시간 0.028초

Korean Red Ginseng extract attenuates alcohol-induced addictive responses and cognitive impairments by alleviating neuroinflammation

  • Hee Jin Kim;Min Yeong Lee;Gyu Ri Kim;Hyun Jun Lee;Leandro Val Sayson;Darlene Mae D. Ortiz;Jae Hoon Cheong;Mikyung Kim
    • Journal of Ginseng Research
    • /
    • 제47권4호
    • /
    • pp.583-592
    • /
    • 2023
  • Background: Alcohol is one of the most commonly used psychoactive drugs. Due to its addictive characteristics, many people struggle with the side effects of alcohol. Korean Red Ginseng (KRG) is a traditional herbal medicine that is widely used to treat various health problems. However, the effects and mechanisms of KRG in alcohol-induced responses remain unclear. Therefore, the purpose of this study was to investigate the effects of KRG in alcohol-induced responses. Methods: We investigated two aspects: alcohol-induced addictive responses and spatial working memory impairments. To determine the effects of KRG in alcohol-induced addictive responses, we performed conditioned place preference tests and withdrawal symptom observations. To assess the effects of KRG in alcohol-induced spatial working memory impairment, Y-maze, Barnes maze, and novel object recognition tests were performed using mice after repeated alcohol and KRG exposure. To investigate the potential mechanism of KRG activity, gas chromatography-mass spectrometry and western blot analysis were performed. Results: KRG-treated mice showed dose-dependent restoration of impaired spatial working memory following repeated alcohol exposure. Furthermore, withdrawal symptoms to alcohol were reduced in mice treated with KRG and alcohol. The PKA-CREB signaling pathway was activated after alcohol administration, which was reduced by KRG. However, the levels of inflammatory cytokines were increased by alcohol and decreased by KRG. Conclusion: Taken together, KRG may alleviate alcohol-induced spatial working memory impairments and addictive responses through anti-neuroinflammatory activity rather than through the PKA-CREB signaling pathway.

Effects of Tumor Necrosis Factor Alpha Blocker Adalimumab in Experimental Spinal Cord Injury

  • Borcek, Alp Ozgun;Civi, Soner;Ocal, Ozgur;Gulbahar, Ozlem
    • Journal of Korean Neurosurgical Society
    • /
    • 제57권2호
    • /
    • pp.73-76
    • /
    • 2015
  • Objective : Tumor necrosis factor alpha (TNF-${\alpha}$) have proven effects in pathogenesis of neuroinflammation after spinal cord injury (SCI). Current study is designed to evaluate the effects of an anti-TNF-${\alpha}$ agent, adalimumab, on spinal cord clip compression injury in rats. Methods : Thirty two male adult Wistar rats were divided into four groups (sham, trauma, infliximab, and adalimumab groups) and SCI was introduced using an aneurysm clip. Animals in treatment groups received 5 mg/kg subcutaneous adalimumab and infliximab right after the trauma. Malondialdehyde (MDA) levels were studied in traumatized spinal cord tissues 72 hours after the injury as a marker of lipid peroxidation. Results : Animals that received anti-TNF-${\alpha}$ agents are found to have significantly decreased MDA levels. MDA levels were significantly different between the trauma and infliximab groups (p<0.01) and trauma and adalimumab groups (p=0.022). There was no significant difference in neurological evaluation of the rats using Tarlov scale. Conclusion : These results suggest that, like infliximab, adalimumab has favorable effects on lipid peroxidation induced by spinal cord trauma in rats.

Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis

  • Sapkota, Arjun;Park, Se Jin;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.152-159
    • /
    • 2019
  • Multiple sclerosis (MS) is an autoimmune disease characterized by progressive neuronal loss, neuroinflammation, axonal degeneration, and demyelination. Previous studies have reported that 6-shogaol, a major constituent of ginger (Zingiber officinale rhizome), and its biological metabolite, 6-paradol, have anti-inflammatory and anti-oxidative properties in the central nervous system (CNS). In the present study, we investigated whether 6-shogaol and 6-paradol could ameliorate against experimental autoimmune encephalomyelitis (EAE), a mouse model of MS elicited by myelin oligodendrocyte glycoprotein ($MOG_{35-55}$) peptide immunization with injection of pertussis toxin. Once-daily administration of 6-shogaol and 6-paradol (5 mg/kg/day, p.o.) to symptomatic EAE mice significantly alleviated clinical signs of the disease along with remyelination and reduced cell accumulation in the white matter of spinal cord. Administration of 6-shogaol and 6-paradol into EAE mice markedly reduced astrogliosis and microglial activation as key features of immune responses inside the CNS. Furthermore, administration of these two molecules significantly suppressed expression level of tumor necrosis $factor-{\alpha}$, a major proinflammatory cytokine, in EAE spinal cord. Collectively, these results demonstrate therapeutic efficacy of 6-shogaol or 6-paradol for EAE by reducing neuroinflammatory responses, further indicating the therapeutic potential of these two active ingredients of ginger for MS.

Ginsenoside Rg3이 Lipopolysaccharide에 의한 생쥐 뇌조직의 Cyclooxygenase-2 발현에 미치는 영향 (Effect of Ginsenoside Rg3 on COX-2 Expression in Brain Tissue of Lipopolysaccharide-Treated Mice)

  • 최원익;조용덕;이준석;신정원;김성준;손낙원
    • 대한본초학회지
    • /
    • 제27권6호
    • /
    • pp.131-137
    • /
    • 2012
  • Objectives : Cyclooxygenase (COX) plays a central role in the inflammatory cascade by converting arachidonic acid into prostaglandin. COX-2 is typically induced by inflammatory stimuli in the majority of tissues, it is responsible for propagating the inflammatory response and thus, considered as the best target for anti-inflammatory drugs. The present study investigated the modulatory effect of ginsenoside Rg3, a principle active ingredient in Panax ginseng, on COX-2 expression in the brain tissue induced by systemic lipopolysaccharide (LPS) treatment in C57BL/6 mice. Methods : Because systemic LPS treatment induces COX-2 expression immediately in the brain, ginsenoside Rg3 was treated orally with doses of 10, 20, and 30 mg/kg at 1 hour before the LPS (3 mg/kg, i.p.) injection. At 4 hours after the LPS injection, COX-2 mRNA was measured by real-time polymerase chain reaction method, COX-2 protein levels were measured by Western blotting. In addition, COX-2 expressions in brain tissue were observed with immunohistochemistry and double immunofluoresence labeling. Results : Ginsenoside Rg3 (20 and 30 mg/kg) significantly attenuates up-regulation of COX-2 mRNA and protein expression in brain tissue at 4 hours after the LPS injection. Moreover, ginsenoside Rg3 (20 mg/kg) significantly reduced the number of COX-2 positive neurons in the cerebral cortex and amygdala. Conclusion : These results indicate that ginsenoside Rg3 plays a modulatory role in neuroinflammation through the inhibition of COX-2 expression in the brain and suggest that ginsenoside Rg3 and ginseng may be effective on neurodegenerative diseases caused by neuroinflammation.

LPS에 의해 활성화된 미세아교세포에서 흰점박이꽃무지 에탄올 추출물의 신경염증 억제 효과 (Inhibitory Effect of Protaetia brevitarsis seulensis Ethanol Extract on Neuroinflammation in LPS-stimulated BV-2 Microglia)

  • 이화정;서민철;이준하;김인우;김선영;황재삼;김미애
    • 생명과학회지
    • /
    • 제29권10호
    • /
    • pp.1096-1103
    • /
    • 2019
  • 신경염증은 알츠하이머병 및 파킨슨병 과 같은 신경퇴행성 장애의 발병원인에 관련이 있는 미세아교세포의 활성에 의해 매개되므로 신경염증억제는 다양한 뇌질환을 치료할 수 있는 효과적인 해결책이 될 수 있다. 흰점박이 꽃무지는 딱정벌레목 풍뎅이과에 속하는 곤충으로 한국, 중국, 일본 및 시베리아에 서식한다. 현재 국내에서는 흰점박이꽃무지가 식용곤충 자원으로서 단백질 공급원일 뿐만 아니라 간보호 효과와 혈행개선 등에 유용한 생리활성 물질을 다량 함유하고 있는 것으로 보고되고 있다. 미세아교세포는 중추신경계에서 염증성 cytokine 및 산화질소의 중요공급원이며 신경면역 및 염증기능 및 기타 다양한 신경생물학적 효과를 발휘한다. 본 연구에서는 LPS(100 ng/ml)를 처리하여 과하게 활성화된 미세아교세포에서 흰점박이꽃무지 에탄올 추출물의 신경염증 억제 효과를 조사하였다. 그 결과, 흰점박이꽃무지 에탄올 추출물은 세포독성 없이 NO 생성을 현저히 억제하였고, iNOS와 COX-2 발현량을 감소시켰으며 LPS에 의해 분비되는 염증성 cytokine의 생성량도 흰점박이꽃무지 추출물에 의해 감소되었다. 이러한 결과는 흰점박이꽃무지 에탄올 추출물이 신경염증 및 퇴행성 신경질환을 예방하기 위한 기능성 물질의 좋은 공급원이 될 수 있음을 시사한다.

Viridicatol from Marine-derived Fungal Strain Penicillium sp. SF-5295 Exerts Anti-inflammatory Effects through Inhibiting NF-κB Signaling Pathway on Lipopolysaccharide-induced RAW264.7 and BV2 Cells

  • Ko, Wonmin;Sohn, Jae Hak;Kim, Youn-Chul;Oh, Hyuncheol
    • Natural Product Sciences
    • /
    • 제21권4호
    • /
    • pp.240-247
    • /
    • 2015
  • Viridicatol (1) has previously been isolated from the extract of the marine-derived fungus Penicillium sp. SF-5295. In the course of further biological evaluation of this quinolone alkaloid, anti-inflammatory effect of 1 in RAW264.7 and BV2 cells stimulated with lipopolysaccharide (LPS) was observed. In this study, our data indicated that 1 suppressed the expression of well-known pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and consequently inhibited the production of iNOS-derived nitric oxide (NO) and COX-2-derived prostaglandin E2 ($PGE_2$) in LPS stimulated RAW264.7 and BV2 cells. Compound 1 also reduced mRNA expression of pro-inflammatory cytokines such as $interleukin-1{\beta}$ ($IL-1{\beta}$), interleukin-6 (IL-6), and tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$). In the further evaluation of the mechanisms of these anti-inflammatory effects, 1 was shown to inhibit nuclear factor-kappa B ($NF-{\kappa}B$) pathway in LPS-stimulated RAW264.7 and BV2 cells. Compound 1 blocked the phosphorylation and degradation of inhibitor kappa B $(I{\kappa}B)-{\alpha}$ in the cytoplasm, and suppressed the translocation of $NF-{\kappa}B$ p65 and p50 heterodimer in nucleus. In addition, viridicatol (1) attenuated the DNA-binding activity of $NF-{\kappa}B$ in LPS-stimulated RAW264.7 and BV2 cells.

Heparin Attenuates the Expression of TNF $\alpha$-induced Cerebral Endothelial Cell Adhesion Molecule

  • Lee, Jeong-Ho;Kim, Chul-Hoon;Seo, Gi-Ho;Lee, Jin-U;Kim, Joo-Hee;Kim, Dong-Goo;Ahn, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권5호
    • /
    • pp.231-236
    • /
    • 2008
  • Heparin is a well-known anticoagulant widely used in various clinical settings. Interestingly, recent studies have indicated that heparin also has anti-inflammatory effects on neuroinflammation-related diseases, such as Alzheimer's disease and meningitis. However, the underlying mechanism of its actions remains unclear. In the present study, we examined the anti-inflammatory mechanism of heparin in cultured cerebral endothelial cells (CECs), and found that heparin inhibited the tumor necrosis factor $\alpha$ ($TNF{\alpha}$)-induced and nuclear factor kappa B (NF-${\kappa}B$)-dependent expression of adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), which are crucial for inflammatory responses. Heparin selectively interfered with NF-${\kappa}B$ DNA-binding activity in the nucleus, which is stimulated by $TNF{\alpha}$. In addition, non-anticoagulant 2,3-O desulfated heparin (ODS) prevented NF-${\kappa}B$ activation by $TNF{\alpha}$, suggesting that the anti-inflammatory mechanism of heparin action in CECs lies in heparin's ability to inhibit the expression of cell adhesion molecules, as opposed to its anticoagulant actions.

향부자(香附子)의 염증 억제 작용을 통한 항파킨슨 효과 (Anti-parkinsonian effect of Cyperi Rhizoma via inhibition of neuroinflammatory action)

  • 김효근;심여문;오명숙
    • 대한본초학회지
    • /
    • 제28권5호
    • /
    • pp.21-28
    • /
    • 2013
  • Objectives : The aim of this study was to investigate the neuroprotective effects and mechanisms of Cyperi Rhizoma extracts (CRE) using in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the neuroprotective effect of CRE against 1-methyl-4-phenylpyridinium (MPP+) toxicity using tyrosine hydroxylase immunohistochemistry (IHC) in primary rat mesencephalic dopaminergic neurons. In addition, the effect of CRE was evaluated in mice PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). For evaluations, C57bl/6 mice were orally treated with CRE 50 mg/kg for 5 days and were injected intraperitoneally with MPTP (20 mg/kg) at 2 h intervals on the last day. To identify the CRE affects on MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum of mice, the behavioral tests and IHC analysis were carried out. Also, we conducted nitric oxide (NO) and tumor necrosis factor-alpha (TNF-${\alpha}$) assay in dopaminergic neurons and IHC using glial markers in SNpc of mice to assess the anti-inflammation effects. Results : In primary mesencephalic culture system, CRE protected dopaminergic cells against $10{\mu}M$ MPP+-induced toxicity at 0.2 and $1.0{\mu}g/mL$. In the behavior tests, CRE treated group showed improved motor deteriorations than those in the MPTP only treated group. CRE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, CRE inhibited productions of NO and TNF-${\alpha}$ in dopaminergic culture system and activation of astrocyte and microglia in SNpc of the mice. Conclusion : We concluded that CRE shows anti-parkinsonian effect by protecting dopaminergic neurons against MPP+/MPTP toxicities through anti-inflammatory actions.

Anti-inflammatory activity of Kyungok-go on Lipopolysaccharide-Stimulated BV-2 Microglia Cells

  • Hyun-Suk Song;Ji-Yeong An;Jin-Young Oh;Dong-Uk Kim;Bitna Kweon;Sung-Joo Park;Gi-Sang Bae
    • 대한한의학회지
    • /
    • 제43권4호
    • /
    • pp.20-32
    • /
    • 2022
  • Objectives: Kyungok-go (KOG) is a traditional multi-herbal medicine commonly used for enforcing weakened immunity for long time. Recently, there are several reports that KOG has anti-inflammatory and immuno-stimulatory activities in many experimental models. However, the protective effects of KOG on neuronal inflammation are still undiscovered. Thus, we investigated the neuro-protective activity of KOG on lipopolysaccharide (LPS)-stimulated mouse microglia cells. To find out KOG's anti-neuroinflammatory effects on microglial cells, we examined the production of nitrite using griess assay, and mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α using real time RT-PCR. In addition, to examine the regulating mechanisms of KOG, we investigated the protein expression of mitogen-activated protein kinases (MAPKs) and Iκ-Bα by western blot. KOG inhibited the elevation of nitrite, iNOS and COX-2 on LPS-stimulated BV2 cells. Also, KOG significantly inhibited the pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α on LPS-stimulated BV2 microglial cells. Moreover, KOG inhibited the activation of c-Jun N-terminal kinase (JNK), P38 and degradation of Iκ-Bα but not the activation of extracellular signal regulated kinase (ERK) on LPS-stimulated BV2 microglial cells. These results showed KOG has the anti-inflammatory effects through the inhibition on nitrite, iNOS, COX-2, IL-1β, IL-6, and TNF-α via the deactivation of JNK, p38 and nuclear factor (NF)-κB on LPS-stimulated BV2 microglial cells. Thereby, KOG could offer the new and promising treatment for neurodegenerative disease related to neuroinflammation.

Korean Red Pine (Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation

  • Go, Min Ji;Kim, Jong Min;Kang, Jin Yong;Park, Seon Kyeong;Lee, Chang Jun;Kim, Min Ji;Lee, Hyo Rim;Kim, Tae Yoon;Joo, Seung Gyum;Kim, Dae-Ok;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1154-1167
    • /
    • 2022
  • In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.