• 제목/요약/키워드: anti-genotoxic

검색결과 25건 처리시간 0.02초

Bracken-fern Extracts Induce Cell Cycle Arrest and Apoptosis in Certain Cancer Cell Lines

  • Roudsari, Motahhareh Tourchi;Bahrami, Ahmad Reza;Dehghani, Hesam;Iranshahi, Mehrdad;Matin, Maryam Moghadam;Mahmoudi, Mahmud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6047-6053
    • /
    • 2012
  • Bracken fern [Pteridium aquilinem (L.) kuhn (Dennstaedtiaceae)] is one of the most common species on the planet. It has been consumed by humans and animals for centuries. Use by some human groups is because they believe bracken fern is good for health as plant medicine. However, it is also one of the few known plants that can cause tumors in farm animals. Many interested groups have focused their attention on bracken fern because of these interesting features. In order to evaluate the biological effects of exposure to this plant in cellular level, human cancer cell lines were treated with the fern dichloromethane extracts and the genotoxic and cytotoxic effects were studied. Anti-proliferative/cytotoxic effects were evaluated by cell count, MTT assay and flow cytometry methods with three different cancer cell lines, TCC, NTERA2, and MCF-7, and two normal cells, HDF1 and HFF3. Pro-apoptotic effects of the extracts were determined by DAPI staining and comet assay, on TCC cancer cells compared to the normal control cell lines. Cellular morphology was examined by light microscopy. Our present study showed that the extract caused DNA damage and apoptosis at high concentrations ($200{\mu}g/mL$) and also it may induce cell cycle arrest (G2/M phase) at mild concentrations (50 and $30{\mu}g/mL$) depending on the cell type and tumor origin. These results indicate that bracken fern extract is a potent source of anticancer compounds that could be utilized pharmaceutically.

In Vitro Studies on Phytochemical Content, Antioxidant, Anticancer, Immunomodulatory, and Antigenotoxic Activities of Lemon, Grapefruit, and Mandarin Citrus Peels

  • Diab, Kawthar AE
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3559-3567
    • /
    • 2016
  • Background: In recent years, there has been considerable research on recycling of agro-industrial waste for production of bioactive compounds. The food processing industry produces large amounts of citrus peels that may be an inexpensive source of useful agents. Objective: The present work aimed to explore the phytochemical content, antioxidant, anticancer, antiproliferation, and antigenotxic activities of lemon, grapefruit, and mandarin peels. Materials and Methods: Peels were extracted using 98% ethanol and the three crude extracts were assessed for their total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity using DPPH (1, 1-diphenyl-2-picrylhydrazyl). Their cytotoxic and mitogenic proliferation activities were also studied in human leukemia HL-60 cells and mouse splenocytes by CCK-8 assay. In addition, genotoxic/antigenotoxic activity was explored in mouse splenocytes using chromosomal aberrations (CAs) assay. Results: Lemon peels had the highest of TPC followed by grapefruit and mandarin. In contrast, mandarin peels contained the highest of TFC followed by lemon and grapefruit peels. Among the extracts, lemon peel possessed the strongest antioxidant activity as indicated by the highest DPPH radical scavenging, the lowest effective concentration 50% ($EC_{50}=42.97{\mu}g\;extract/mL$), and the highest Trolox equivalent antioxidant capacity (TEAC=0.157). Mandarin peel exhibited moderate cytotoxic activity ($IC_{50}=77.8{\mu}g/mL$) against HL-60 cells, whereas grapefruit and lemon peels were ineffective anti-leukemia. Further, citrus peels possessed immunostimulation activity via augmentation of proliferation of mouse splenocytes (T-lymphocytes). Citrus extracts exerted non-cytotoxic, and antigenotoxic activities through remarkable reduction of CAs induced by cisplatin in mouse splenocytes for 24 h. Conclusions: The phytochemical constituents of the citrus peels may exert biological activities including anticancer, immunostimulation and antigenotoxic potential.

Hypoglycemic and Hypocholesterolemic Effects of Botryosphaeran from Botryosphaeria rhodina MAMB-05 in Diabetes-Induced and Hyperlipidemia Conditions in Rats

  • Miranda-Nantes, Carolina C.B.O.;Fonseca, Eveline A.I.;Zaia, Cassia T.B.V.;Dekker, Robert F.H.;Khaper, Neelam;Castro, Inar A.;Barbosa, Aneli M.
    • Mycobiology
    • /
    • 제39권3호
    • /
    • pp.187-193
    • /
    • 2011
  • Botryosphaeran, a water-soluble exopolysaccharide of the ${\beta}-(1{\rightarrow}3;1{\rightarrow}6)$-D-glucan type that has been isolated from the culture medium of Botryosphaeria rhodina MAMB-05 grown in submerged fermentation using glucose as the sole carbon source, was previously demonstrated to be non-genotoxic in peripheral blood and bone marrow, and exhibited strong anticlastogenic activity. In the present study, the effects of botryosphaeran were investigated in streptozotocin-induced diabetic rats as well as in high-fat diet-fed hyperlipidemic Wistar rats. The plasma glucose level was reduced by 52% in the diabetic group of rats after administration of 12 mg botryosphaeran/kg body weight of the rats (b.w.)/day by gavage over 15 days. A reduction in the median ration intake was accompanied by an increase in the median body weight gain, as well as the efficiency of food conversion. These results demonstrate that botryosphaeran has protective effects by reducing the symptoms of cachexia in Diabetes mellitus. Botryosphaeran administered by gavage at a concentration of 12 mg botryosphaeran/kg b.w./day over 15 days also reduced the plasma levels of total cholesterol and low density lipoprotein-cholesterol by 18% and 27%, respectively, in hyperlipidemic rats. Based on these findings, we conclude that botryosphaeran possesses hypoglycemic and hypocholesterolemic properties in conditions of diabetes mellitus and hyperlipidemia, respectively, and may be used as an oral anti-diabetic agent.

발효과정이 솔잎 착즙액의 항산화, alpha-Glucosidase 및 Angiotensin Converting Enzyme 저해 활성에 미치는 영향 (Effects of Fermentation on the Metabolic Activities of Pine Needle Juice)

  • 김소윤;이현정;박재희;김래영;정현숙;박은주
    • 한국식품영양과학회지
    • /
    • 제42권3호
    • /
    • pp.325-334
    • /
    • 2013
  • 솔잎착즙액과 솔잎발효액의 항산화활성을 분석하기 위하여 총 페놀함량, DPPH 라디칼 소거능, 총 항산화능, $ORAC_{ROO{\cdot}}$ 활성, CAC 활성을 분석하였고, 항유전독성을 분석하기 위하여 DNA 손상 억제능을 분석하였으며, 항당뇨효과와 항고혈압 효과를 분석하기 위하여 각각 ${\alpha}$-glucosidase 및 ACE 저해활성을 분석하였다. 총 페놀 함량은 솔잎착즙액(17.3 mg GAE/g)이 솔잎발효액(4.6 mg GAE/g)보다 유의적으로 3.7배 높았으며, 이는 발효가 진행됨에 따라 페놀 성분이 침전된 결과로 보인다. DPPH 라디칼 소거능, 총 항산화능 및 $ORAC_{ROO{\cdot}}$ 활성은 솔잎착즙액이 솔잎발효액 보다 유의적으로 높았다. 즉 1 mg/mL 수준에서 솔잎착즙액과 솔잎발효액의 DPPH 라디칼 소거능은 각각 33.3%, 21.4%로 나타났고, $60{\sim}530{\mu}g/mL$ 농도에서 솔잎착즙액이 솔잎발효액보다 유의적으로 높은 총 항산화능을 나타내었으며, $2{\sim}100{\mu}g/mL$ 농도에서 솔잎착즙액이 솔잎발효액보다 유의적으로 높은 $ORAC_{ROO{\cdot}}$ 활성을 나타내었다. 솔잎착즙액과 솔잎발효액의 CAC 활성은 AAPH 처리군보다 솔잎착즙액 및 솔잎발효액 처리군의 CAC 활성이 농도 의존적으로 증가하였으며, $50{\mu}g/mL$ 농도를 제외하고 두 그룹 간의 유의적인 차이는 나타나지 않았다. 솔잎착즙액과 솔잎발효액의 항산화활성의 상관관계는 총 항산화능과 DPPH 라디칼소거능(r=0.836, p=0.000) 및 ORAC assay(r=0.918, p=0.000) 간의 높은 양의 상관관계가 나타났을 뿐만 아니라 DPPH 라디칼 소거능과 ORAC assay(r=0.909, p=0.000) 간에도 높은 양의 상관관계가 나타나 솔잎착즙액과 솔잎발효액의 높은 항산화활성을 추측할 수 있었다. $H_2O_2$로 유도된 산화적 스트레스에 대한 DNA 손상 억제능은 솔잎착즙액과 솔잎발효액에서 농도의존적으로 증가하였으며, $50{\mu}g/mL$ 농도에서 솔잎발효액이 솔잎착즙액보다 더 높은 경향을 나타내었다. 솔잎착즙액과 솔잎발효액의 항당뇨 효과를 알아보기 위하여 ${\alpha}$-glucosidase 억제능을 실험한 결과 희석배율이 증가할수록 솔잎발효액의 ${\alpha}$-glucosidase 억제능은 급격히 감소하는 반면, 솔잎착즙액은 솔잎발효액보다 높은 활성을 유지하는 것으로 나타났다. 항고혈압 효과 분석을 위한 ACE 저해활성은 2배 희석 시 솔잎착즙액 87.1%, 솔잎발효액 60.0%로 솔잎착즙액의 ACE 저해활성이 높은 경향을 나타내었다. 본 연구를 통해 솔잎착즙액의 다양한 생리활성을 평가하고자 하였으며, 발효가 이러한 생리활성에 미치는 영향을 분석하고자 하였다. 본 연구에서 2년간 발효한 솔잎발효액만을 분석하였고, 발효기간에 따른 활성의 변화를 평가하지 못한 제한점이 있으나 본 연구의 결과는 지금까지 연구가 미흡했던 솔잎착즙액의 생리활성을 보고함으로써 솔잎을 활용한 기능성 소개개발에 유용한 자료로 제안될 수 있을 것이다. 또한 향후 연구에서 솔잎착즙액의 기능성을 증대시킬 수 있는 발효과정에 대한 연구가 수행되어야 할 것이다.

Autophagy Inhibition with Monensin Enhances Cell Cycle Arrest and Apoptosis Induced by mTOR or Epidermal Growth Factor Receptor Inhibitors in Lung Cancer Cells

  • Choi, Hyeong Sim;Jeong, Eun-Hui;Lee, Tae-Gul;Kim, Seo Yun;Kim, Hye-Ryoun;Kim, Cheol Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • 제75권1호
    • /
    • pp.9-17
    • /
    • 2013
  • Background: In cancer cells, autophagy is generally induced as a pro-survival mechanism in response to treatment-associated genotoxic and metabolic stress. Thus, concurrent autophagy inhibition can be expected to have a synergistic effect with chemotherapy on cancer cell death. Monensin, a polyether antibiotic, is known as an autophagy inhibitor, which interferes with the fusion of autophagosome and lysosome. There have been a few reports of its effect in combination with anticancer drugs. We performed this study to investigate whether erlotinib, an epidermal growth factor receptor inhibitor, or rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, is effective in combination therapy with monensin in non-small cell lung cancer cells. Methods: NCI-H1299 cells were treated with rapamycin or erlotinib, with or without monensin pretreatment, and then subjected to growth inhibition assay, apoptosis analysis by flow cytometry, and cell cycle analysis on the basis of the DNA contents histogram. Finally, a Western blot analysis was done to examine the changes of proteins related to apoptosis and cell cycle control. Results: Monensin synergistically increases growth inhibition and apoptosis induced by rapamycin or erlotinib. The number of cells in the sub-$G_1$ phase increases noticeably after the combination treatment. Increase of proapoptotic proteins, including bax, cleaved caspase 3, and cleaved poly(ADP-ribose) polymerase, and decrease of anti-apoptotic proteins, bcl-2 and bcl-xL, are augmented by the combination treatment with monensin. The promoters of cell cycle progression, notch3 and skp2, decrease and p21, a cyclin-dependent kinase inhibitor, accumulates within the cell during this process. Conclusion: Our findings suggest that concurrent autophagy inhibition could have a role in lung cancer treatment.