• 제목/요약/키워드: anti-dew film

검색결과 4건 처리시간 0.019초

도로표지판의 결로 방지 대안별 효과 분석 (An Alternative Effectiveness Analysis on Anti-Dew Road Sign)

  • 박재홍;윤덕근;성정곤;강원의
    • 한국도로학회논문집
    • /
    • 제14권2호
    • /
    • pp.55-61
    • /
    • 2012
  • 도로표지는 운전자에게 정보제공의 역할을 하는 도로시설물로서 주행경로에 대한 운전자의 판단을 도와준다. 그러나, 주 야간의 온도, 습도 변화로 인한 도로표지판에 결로발생 시, 정보전달의 결함이 발생하여 교통사고 가능성을 높이는 원인으로 작용한다. 따라서, 도로표지판의 결로발생을 예방하기 위한 기술이 필요하다. 본 연구에서는 도로표지판의 결로발생을 예방하는 대안의 효과를 비교하기 위해 단열소재가 삽입된 시편, 결로방지필름이 부착된 시편을 선정하고 결로방지처리가 되지 않은 일반시편과 비교하였다. 분산분석과 사후검정(Tukey HSD)을 통해 각 시편에 발생한 측정시간에 따른 결로량을 비교 했으며, 결로량과 재귀반사도의 관계를 Pearson의 상관분석으로써 검증하였다. 분석결과, 결로방지필름이 부착된 시편에서 결로량이 적게 나타났으며, 결로발생 90초 후에는 결로방지필름의 부착 시편과 단열소재가 삽입된 시편에서 나타나는 결로량은 결로방지 처리가 되지 않은 시편에서 발생한 결로량과의 통계적인 차이가 존재하였다. 또한, 상관분석결과로써 결로량과 재귀반사도는 반비례하는 것으로 나타났다. 따라서, 도로표지판에 발생된 결로량과 재귀반사 변화율에 대하여, 결로방지필름의 부착과 단열소재의 삽입은 결로방지에 효과가 존재하는 것으로 판단된다.

Study of Pallet Scale Modified Atmosphere Packaging Films for Reducing Water Condensation

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Lee, Jung- Soo;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.98-107
    • /
    • 2016
  • Purpose: The aim of this study was to find an appropriate polymer film, which could reduce the water condensation for pallet-size modified atmosphere packaging (MAP). Methods: Five different types of films were selected from several commercialized films. Prior to the real food storage test, plastic boxes with wetted plastic balls were used to simulate the high humidity conditions of real food storage. The initial MAP condition was 5% oxygen and 95% nitrogen, and the $O_2$ concentration, the relative humidity and water condensation inside the films were checked on a daily basis. The MAP test for tomatoes was conducted by using the most appropriate film from the five films examined in this study. Results: Every film except Mosspack(R) indicated a similar variation in the $O_2$ concentration over the course of time. The relative humidity near the surfaces of all the films except nylon-6 approached saturation conditions over time. For three kinds of films, namely, low-density polyethylene (LDPE) film, anti-fogging oriented polypropylene (AFOPP) film, and Mosspack(R), the inner surfaces of the films were fully covered with dew after a storage period of a day. Conversely, an area of 4.5% was covered with dew in the case of the poly lactic acid (PLA) film, and there was no dew inside the nylon-6 film. The pallet-size MAP test for tomatoes was conducted by using the nylon-6 film and there was no water condensation inside the nylon-6 film over three weeks of storage. Conclusions: During the pallet scale MAP, water condensation could cause severe fungal infection and wetting of the corrugated box. Hence, it was important to minimize water condensation. This study showed that the MAP films with high WVTR such as nylon-6 and PLA could reduce the water condensation inside the pallet scale MAP.

Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-bearing low Alloy Steels

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제17권4호
    • /
    • pp.154-165
    • /
    • 2018
  • During the process of sulfur dioxide removal, flue gas desulfurization equipment provides a serious internal corrosion environment in creating sulfuric acid dew point corrosion. Therefore, the utilities must use the excellent corrosion resistance of steel desulfurization facilities in the atmosphere. Until now, the trend in developing anti-sulfuric acid steels was essentially the addition of Cu, in order to improve the corrosion resistance. The experimental alloy used in this study is Fe-0.03C-1.0Mn-0.3Si-0.15Ni-0.31Cu alloys to which Ru, Zn and Ta were added. In order to investigate the effect of $H_2SO_4$ concentration and the alloying elements, chemical and electrochemical corrosion tests were performed. In a low concentration of $H_2SO_4$ solution, the major factor affecting the corrosion rate of low alloy steels was the exchange current density for $H^+/H_2$ reaction, while in a high concentration of $H_2SO_4$ solution, the major factors were the thin and dense passive film and resulting passivation behavior. The alloying elements reducing the exchange current density in low concentration of $H_2SO_4$, and the alloying elements decreasing the passive current density in high concentration of $H_2SO_4$, together play an important role in determining the corrosion rate of Cu-bearing low alloy steels in a wide range of $H_2SO_4$ solution.