• Title/Summary/Keyword: anti-cancer drug

Search Result 515, Processing Time 0.029 seconds

Studies on Combined Usage of Velvet Antler Water Extract and Anti-neoplastic Drugs (I) -Reducing Effect of Velvet Antler Water Extract to the Adverse Actions of cis-Platin and Mitomycin C- (녹용 물추출물과 항암제의 병용투여에 관한 연구(제 1보) -녹용 물추출물과 cis-Platin 및 Mitomycin C 병용투여에 의한 항암제 부작용 경감효과-)

  • Sim, Sang-Bum;Kim, Jae-Kun;Won, Do-Hee;Hong, Nam-Doo;Kim, Nam-Jae
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.2
    • /
    • pp.93-103
    • /
    • 1998
  • In order to investigate the reducing effect of velvet antler water extract (VAWE) on the toxicity of anti-cancer drug, cis-platin (CDDP) and mitomycin C (MMC), we examined effects of co-administration with VAWE and anti-cancer drugs on their toxicities. We recognized that $LD_{50}$ of CDDP/MMC were increased by co-administration with VAWE and them in mice. It was found that co-administration of VAWE and MMC increased the survival rate in mice treated by lethal dose of MMC. Also, co-administration of VAWE and CDDP/MMC inhibited decrease of the body weight and organ weight in mice intoxificated by CDDP/MMC. The increase of serum blood urea and serum creatinine levels in rats intoxicated by CDDP were significantly inhibited by the co-administrationin with VAWE and CDDP. The decrease of RBC and WBC in rats intoxificated by MMC were significantly inhibited by the co-administration with VAWE and MMC. These results suggest that the combined usage of VAWE and CDDP/MMC drugs may be a new method for prevented or minimized the toxicity of them.

  • PDF

Albendazole and Mebendazole as Anti-Parasitic and Anti-Cancer Agents: an Update

  • Chai, Jong-Yil;Jung, Bong-Kwang;Hong, Sung-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.3
    • /
    • pp.189-225
    • /
    • 2021
  • The use of albendazole and mebendazole, i.e., benzimidazole broad-spectrum anthelmintics, in treatment of parasitic infections, as well as cancers, is briefly reviewed. These drugs are known to block the microtubule systems of parasites and mammalian cells leading to inhibition of glucose uptake and transport and finally cell death. Eventually they exhibit ovicidal, larvicidal, and vermicidal effects on parasites, and tumoricidal effects on hosts. Albendazole and mebendazole are most frequently prescribed for treatment of intestinal nematode infections (ascariasis, hookworm infections, trichuriasis, strongyloidiasis, and enterobiasis) and can also be used for intestinal tapeworm infections (taeniases and hymenolepiasis). However, these drugs also exhibit considerable therapeutic effects against tissue nematode/cestode infections (visceral, ocular, neural, and cutaneous larva migrans, anisakiasis, trichinosis, hepatic and intestinal capillariasis, angiostrongyliasis, gnathostomiasis, gongylonemiasis, thelaziasis, dracunculiasis, cerebral and subcutaneous cysticercosis, and echinococcosis). Albendazole is also used for treatment of filarial infections (lymphatic filariasis, onchocerciasis, loiasis, mansonellosis, and dirofilariasis) alone or in combination with other drugs, such as ivermectin or diethylcarbamazine. Albendazole was tried even for treatment of trematode (fascioliasis, clonorchiasis, opisthorchiasis, and intestinal fluke infections) and protozoan infections (giardiasis, vaginal trichomoniasis, cryptosporidiosis, and microsporidiosis). These drugs are generally safe with few side effects; however, when they are used for prolonged time (>14-28 days) or even only 1 time, liver toxicity and other side reactions may occur. In hookworms, Trichuris trichiura, possibly Ascaris lumbricoides, Wuchereria bancrofti, and Giardia sp., there are emerging issues of drug resistance. It is of particular note that albendazole and mebendazole have been repositioned as promising anti-cancer drugs. These drugs have been shown to be active in vitro and in vivo (animals) against liver, lung, ovary, prostate, colorectal, breast, head and neck cancers, and melanoma. Two clinical reports for albendazole and 2 case reports for mebendazole have revealed promising effects of these drugs in human patients having variable types of cancers. However, because of the toxicity of albendazole, for example, neutropenia due to myelosuppression, if high doses are used for a prolonged time, mebendazole is currently more popularly used than albendazole in anti-cancer clinical trials.

Self-organized Pullulan/Deoxycholic Acid Nanogels: Physicochemical Characterization and Anti-cancer Drug-releasing Behavior

  • Na, Kun;Park, Kyong-Mi;Jo, Eun-Ae;Lee, Kwan-Shik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • The objective of this study was to develop new self-organized nanogels as a means of drug delivery in patients with cancer. Pullulan (PUL) and deoxycholic acid (DOCA) were conjugated through an ester linkage between the hydroxyl group in PUL and the carboxyl group in DOCA. Three types of PUL/DOCA conjugates were obtained, differing in the number of DOCA substitutions (DS; 5, 8, or 11) per 100 PUL anhydroglucose units. The physicochemical properties of the resulting nanogels were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of DS 11 was the smallest (approx. 100 nm), and the size distribution was unimodal. To determine the organizing behavior of these conjugates, we calculated their critical aggregation concentrations (CACs) in a 0.01-M phosphate buffered saline solution. They were $10.5{\times}10^{-4}mg/mL,\;7.2{\times}10^{-4} mg/mL,\;and\;5.6{\times}10^{-4} mg/mL$ for DS 5, 8, and 11, respectively. This indicates that DOCA can serve as a hydrophobic moiety to create self-organized nanogels. To monitor the drug-releasing behavior of these nanogels, we loaded doxorubicin (DOX) onto the conjugates. The DOX-loading efficiency increased with the degree of DOCA substitution. The release rates of DOX from PUL/DOCA nanogels varied inversely with the DS. We concluded that the PUL/DOCA nanogel has some potential for use as an anticancer drug carrier because of its low CAC and satisfactory drug-loading capacity.

An Epigenetic Mechanism Underlying Doxorubicin Induced EMT in the Human BGC-823 Gastric Cancer Cell

  • Han, Rong-Fei;Ji, Xiang;Dong, Xing-Gao;Xiao, Rui-Jing;Liu, Yan-Ping;Xiong, Jie;Zhang, Qiu-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4271-4274
    • /
    • 2014
  • The epithelial to mesenchymal transition (EMT) is a key step during embryonic morphogenesis and plays an important role in drug resistance and metastasis in diverse solid tumors. We previously reported that 48 h treatment of anti-cancer drug doxorubicin could induce EMT in human gastric cancer BGC-823 cells. However, the long term effects of this transient drug treatment were unknown. In this study we found that after 48 h treatment with $0.1{\mu}g/ml$ doxorubicin, most cells died during next week, while a minor population of cells survived and formed colonies. We propagated the surviving cells in drug free medium and found that these long term cultured drug survival cells (abbreviated as ltDSCs) retained a mesenchymal-like cell morphology, and expressed high levels of EMT-related molecules such as vimentin, twist and ${\beta}$-catenin. The expression of chromatin reprogramming factors, Oct4 and c-myc, were also higher in ltDSCs than parental cells. We further demonstrated that the protein level of p300 was upregulated in ltDSCs, and inhibition of p300 by siRNA suppressed the expression of vimentin. Moreover, the ltDSCs had higher colony forming ability and were more drug resistant when compared to parental cells. Our results suggested that an epigenetic mechanism is involved in the EMT of ltDSCs.

Synthesis of Butein Analogues and their Anti-proliferative Activity Against Gefitinib-resistant Non-small Cell Lung Cancer (NSCLC) through Hsp90 Inhibition

  • Seo, Young Ho;Jeong, Ju Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1294-1298
    • /
    • 2014
  • Non-small cell lung cancer (NSCLC) is the most common type of lung cancer representing 85% of lung cancer patients. Despite several EGFR-targeted drugs have been developed in the treatment of NSCLC, the clinical efficacy of these EGFR-targeted therapies is being challenged by the occurrence of drug resistance. In this regard, Hsp90 represents great promise as a therapeutic target of cancerous diseases due to its role in modulating and stabilizing numerous oncogenic proteins. Accordingly, inhibition of single Hsp90 protein simultaneously disables multiple signaling networks so as to overcome drug resistance in cancer. In this study, we synthesized a series of 11 butein analogues and evaluated their biological activities against gefitinibresistant NSCLC cells (H1975). Our study indicated that analogue 1h inhibited the proliferation of H1975 cells, down-regulated the expression of Hsp90 client proteins, including EGFR, Met, Her2, Akt and Cdk4, and upregulated the expression of Hsp70. The result suggested that compound 1h disrupted Hsp90 chaperoning function and could serve a potential lead compound to overcome the drug resistance in cancer chemotherapy.

Synergism of Cytotoxicity Effects of Triptolide and Artesunate Combination Treatment in Pancreatic Cancer Cell Lines

  • Liu, Yao;Cui, Yun-Fu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.9
    • /
    • pp.5243-5248
    • /
    • 2013
  • Background: Triptolide, extracted from the herb Tripteryglum wilfordii Hook.f that has long been used as a natural medicine in China, has attracted much interest for its anti-cancer effects against some kinds of tumours in recent years. Artesunate, extracted from the Chinese herb Artemisia annua, has proven to be effective and safe as an anti-malarial drug that possesses anticancer potential. The present study attempted to clarify if triptolide enhances artesunate-induced cytotoxicity in pancreatic cancer cell lines in vitro and in vivo. Methods: In vitro, to test synergic actions, cell viability and apoptosis were analyzed after treatment of pancreatic cancer cell lines with the two agents singly or in combination. The molecular mechanisms of apoptotic effects were also explored using qRT-PCR and Western blotting. In vivo, a tumor xenograft model was established in nude mice, for assessment of inhibitory effects of triptolide and artesunate. Results: We could show that the combination of triptolide and artesunate could inhibit pancreatic cancer cell line growth, and induce apoptosis, accompanied by expression of HSP 20 and HSP 27, indicating important roles in the synergic effects. Moreover, tumor growth was decreased with triptolide and artesunate synergy. Conclusion: Our result indicated that triptolide and artesunate in combination at low concentrations can exert synergistic anti-tumor effects in pancreatic cancer cells with potential clinical applications.

Inhibitory Activity of Drug-metabolizing Enzyme CYP3A4 of Zanthoxylum Peel (산초의 약물대사효소 CYP3A4 저해 활성)

  • Cha, Bae Cheon
    • Korean Journal of Pharmacognosy
    • /
    • v.50 no.3
    • /
    • pp.159-164
    • /
    • 2019
  • Zanthoxylum Peel is widely used as a common spice for a variety of foods. In the orient, it has also been used as traditional agents for treating diseases such as indigestion. Recently, Zanthoxylum Peel has been reported to have anti-cancer activity, anti-microbial activity, and anti-inflammatory activity. Chemical components are known sanshool compounds and xanthoxylin. In this study, we were carried out to investigate the constituents of inhibiting a drug metabolizing enzyme CYP3A4 from Zanthoxylum Peel. CYP3A4 is known as an enzyme involved in drug metabolism as monooxygenase containing the heme. As a result of experiment, we found that bergapten ($IC_{50}=18.21{\mu}M$) and quercetin ($IC_{50}=17.27{\mu}M$) isolated from EtOAc extract of Zanthoxylum Peel showed remarkable CYP3A4-inhibiting activities. Structures of the isolated active compounds were established by chemical and spectroscopic means.