• 제목/요약/키워드: anti-blocking

검색결과 260건 처리시간 0.028초

Sulforaphane Inhibits Growth of Human Breast Cancer Cells and Augments the Therapeutic Index of the Chemotherapeutic Drug, Gemcitabine

  • Hussain, Arif;Mohsin, Javeria;Prabhu, Sathyen Alwin;Begum, Salema;Nusri, Qurrat El-Ain;Harish, Geetganga;Javed, Elham;Khan, Munawwar Ali;Sharma, Chhavi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5855-5860
    • /
    • 2013
  • Phytochemicals are among the natural chemopreventive agents with most potential for delaying, blocking or reversing the initiation and promotional events of carcinogenesis. They therefore offer cancer treatment strategies to reduce cancer related death. One such promising chemopreventive agent which has attracted considerable attention is sulforaphane (SFN), which exhibits anti-cancer, anti-diabetic, and anti-microbial properties. The present study was undertaken to assess effect of SFN alone and in combination with a chemotherapeutic agent, gemcitabine, on the proliferative potential of MCF-7 cells by cell viability assay and authenticated the results by nuclear morphological examination. Further we analyzed the modulation of expression of Bcl-2 and COX-2 on treatment of these cells with SFN by RT-PCR. SFN showed cytotoxic effects on MCF-7 cells in a dose- and time-dependent manner via an apoptotic mode of cell death. In addition, a combinational treatment of SFN and gemcitabine on MCF-7 cells resulted in growth inhibition in a synergistic manner with a combination index (CI)<1. Notably, SFN was found to significantly downregulate the expression of Bcl-2, an anti-apoptotic gene, and COX-2, a gene involved in inflammation, in a time-dependent manner. These results indicate that SFN induces apoptosis and anti-inflammatory effects on MCF-7 cells via downregulation of Bcl-2 and COX-2 respectively. The combination of SFN and gemcitabine may potentiate the efficacy of gemcitabine and minimize the toxicity to normal cells. Taken together, SFN may be a potent anti-cancer agent for breast cancer treatment.

Agastache rugosa Kuntze Attenuates UVB-Induced Photoaging in Hairless Mice through the Regulation of MAPK/AP-1 and TGF-β/Smad Pathways

  • Yun, Mann-Seok;Kim, Changhee;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1349-1360
    • /
    • 2019
  • Chronic exposure to ultraviolet (UV) radiation, regarded as a major cause of extrinsic aging or photoaging characterized by wrinkle formation and skin dehydration, exerts adverse effects on skin by causing the overproduction of reactive oxygen species. Agastache rugosa Kuntze, known as Korean mint, possesses a wide spectrum of biological properties including anti-oxidation, anti-inflammation, and anti-atherosclerosis. Previous studies have reported that A. rugosa protected human keratinocytes against UVB irradiation by restoring the anti-oxidant defense system. However, the anti-photoaging effect of A. rugosa extract (ARE) in animal models has not yet been evaluated. ARE was orally administered to hairless mice at doses of 100 or 250 mg/kg/day along with UVB exposure for 12 weeks. ARE histologically improved UVB-induced wrinkle formation, epidermal thickening, erythema, and hyperpigmentation. In addition, ARE recovered skin moisture by improving skin hydration and transepidermal water loss (TEWL). Along with this, ARE increased hyaluronic acid levels by upregulating HA synthase genes. ARE markedly increased the density of collagen and the amounts of hydroxypoline via two pathways. First, ARE significantly downregulated the mRNA expression of matrix metalloproteinases responsible for collagen degradation by inactivating the mitogen-activated protein kinase/activator protein 1 pathway. Second, ARE stimulated the transforming growth factor beta/Smad signaling, consequently raising the mRNA levels of collagen-related genes. In addition, ARE not only increased the mRNA expression of anti-oxidant enzymes but also decreased inflammatory cytokines by blocking the protein expression of nuclear factor kappa B. Collectively, our findings suggest that A. rugosa may be a potential preventive and therapeutic agent for photoaging.

Vaccinium oldhamii Stems Inhibit Pro-inflammatory Response and Osteoclastogenesis through Inhibition of NF-κB and MAPK/ATF2 Signaling Activation in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 추계학술대회
    • /
    • pp.67-67
    • /
    • 2019
  • Vaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of ${\alpha}$-amylase and acetylcholinesterase. However, the anti-inflammatory activity of V. oldhamii has not been studied. In this study, we aimed to investigate anti-inflammatory activity of the stem extracts from V. oldhamii, and to elucidate the potential mechanisms in LPS-stimulated RAW264.7 cells. Among VOS, VOL and VOF, the inhibitory effect of NO and PGE2 production induced by LPS was highest in VOS treatment. Thus, VOS was selected for the further study. VOS dose-dependently blocked LPS-induced NO and PGE2 production by inhibiting iNOS and COX-2 expression, respectively. VOS inhibited the expression of pro-inflammatory cytokines such as $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. In addition, VOS suppressed TRAP activity and attenuated the expression of the osteoclast-specific genes such as NFATc1, c-FOS, TRAP, MMP-9, cathepsin K, CA2, OSCAR and ATPv06d2. VOS inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. VOS inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, VOS inhibited ATF2 phosphorylation and blocked ATF2 nuclear accumulation. From these findings, VOS has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

  • PDF

Inhibitory Effects of Standardized Leonurus japonicus Extract and Its Bioactive Leonurine on TNF-α-Induced Muscle Atrophy in L6 Myotubes

  • Lee, Jiyeon;Kim, Changhee;Lee, Hyerin;Hwang, Jae-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1896-1904
    • /
    • 2020
  • Muscle atrophy, characterized by a reduced number and size of myofibers, occurs due to immobilization, aging, and several chronic diseases. Leonurus japonicus, belonging to the Labiatae family, is widely used as a traditional medicine in Korea, China, and Japan. Previous studies have reported that L. japonicus has various physiological activities, such as anti-bacteria, anti-cancer, and liver protection. Leonurine, which is a major bioactive in L. japonicas, is known to possess biological effects including anti-inflammation, anti-fibrosis, anti-angiogenesis, and anti-diabetes. However, the preventive effects of L. japonicas and leonurine on muscle have not been reported. The current study aimed to determine the inhibitory effects of standardized L. japonicus extract (LJE) and leonurine on muscle atrophy by clarifying their underlying molecular mechanisms in tumor necrosis factor-alpha (TNF-α)-stimulated L6 myotubes. LJE and leonurine stimulated the phosphatidylinositol 3-kinase/Akt pathway that was reduced by TNF-α treatment. LJE and leonurine not only increased the mammalian target of rapamycin pathway for protein anabolism but also decreased the mRNA expression of E3 ubiquitin ligases by blocking the translocation of Forkhead box O, which is closely linked with proteolysis. Additionally, LJE and leonurine alleviated inflammatory responses by downregulating TNF-α and interleukin-6 mRNA expression and reducing the protein expression of nuclear factor-kappa B, a major transcriptional factor of proinflammatory cytokines. Collectively, LJE and leonurine have potential as therapeutic candidates for inhibiting the development of skeletal muscle atrophy by activating the PI3K/Akt pathway and reducing inflammatory responses.

The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-κB pathways in RAW 264.7 macrophages

  • Heo, Seong-Yeong;Ko, Seok-Chun;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • 제21권5호
    • /
    • pp.14.1-14.8
    • /
    • 2018
  • The objective of this study was to investigate the anti-inflammatory effects of the pepsinolytic hydrolysate from the fish frame, Johnius belengerii, on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The J. belengerii frame hydrolysate (JFH) significantly suppressed nitric oxide (NO) secretion on LPS-stimulated RAW264.7 macrophages. Moreover, the JFH markedly inhibited the levels of protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the LPS-stimulated mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 was downregulated when cells were cultured with the JFH. The JFH significantly reduced the phosphorylation of c-Jun N-terminal kinase (JNK) and the translocation of nuclear factor-kappa B ($NF-{\kappa}B$) in macrophages. As the result, the JFH has the potential anti-inflammatory activity via blocking the JNK and $NF-{\kappa}B$ signal pathways.

Oridonin Suppresses Proliferation of Human Ovarian Cancer Cells via Blockage of mTOR Signaling

  • Xia, Rong;Chen, Sun-Xiao;Qin, Qin;Chen, Yan;Zhang, Wei-Wei;Zhu, Rong-Rong;Deng, An-Mei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.667-671
    • /
    • 2016
  • Oridonin, an ent-kaurane diterpenoid compound isolated from the traditional Chinese herb Rabdosia rubescens, has shown various pharmacological and physiological effects such as anti-tumor, anti-bacterial, and anti-inflammatory properties. However, the effect of oridonin on human ovarian cancer cell lines has not been determined. In this study, we demonstrated that oridonin inhibited ovarian cancer cell proliferation, migration and invasion in a dose-dependent manner. Furthermore, we showed oridonin inhibited tumor growth of ovarian cancer cells (SKOV3) in vivo. We then assessed mechanisms and found that oridonin specifically abrogated the phosphorylation/activation of mTOR signaling. In summary, our results indicate that oridonin is a potential inhibitor of ovarian cancer by blocking the mTOR signaling pathway.

Inhibition of Lipopolysaccharide-Induced Expression of Inducible Nitric Oxide and Cyclooxygenase-2 by Aquaous of Aconitum pseudo-laeve var. erectum in RAW 264.7 Macrophages

  • Han, Myung-Soo;Lee, Jae-Hyok;Kim, Ee-Hwa
    • 동의생리병리학회지
    • /
    • 제22권3호
    • /
    • pp.678-683
    • /
    • 2008
  • Aconitum pseudo-laeve var. erectum has traditionally been used for the treatment of water retention in the body. Administration of the aqueous extract of Aconitum pseudo-laeve var. erectum has the efficiency of anti-inflammatory activity and modulates the intestinal immune system. However, the mechanism of anti-inflammatory action of Aconitum pseudo-laeve var. erectum has not been clarified yet. In the present study, the effect of Aconitum pseudo-laeve var. erectum against LPS-stimulated expressions of COX-2 and iNOS in cells of the murine RAW 264.7 macrophages was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription- polymerase chain reaction (RT-PCR), PGE2 immunoassay, and NO detection. The results of the present study indicate that Aconitum pseudo-laeve var. erectum is a potent inhibitor of the LPS-induced NO and $PGE_{2}$ production by blocking iNOS and $NF{\kappa}B$ activation in RAW 264.7 macrophages. These findings suggest that Aconitum pseudo-laeve var. erectum is a potential therapeutic for the treatment of inflammatory syndrome.

A Proposal of Dietary Supplement from Choto-san, a Kampo Medicine

  • Watanabe, Hiroshi
    • Biomolecules & Therapeutics
    • /
    • 제12권3호
    • /
    • pp.138-144
    • /
    • 2004
  • Therapeutic effect of a Kampo medicine, Choto-san, in patients with vascular dementia was demonstrated by a double-blind and placebo-controlled clinical trial. To clarify the therapeutic efficacy of Choto-san, anti-ischemic effect in mice, hypotensive effect in spontaneously hypertensive rats (SHR), anti-oxidative effects in vitro, and N-methyl-D-aspartate (NMDA) receptor-blocking activity using Xenopus oocytes were studied. (1) Pretreatment with Choto-san (0.75-6.O g/kg, P.O.) or a component herb Chotoko (Uncaria genus: 75 - 600 mg/kg, P.O.) prevented ischemia-induced impairment of spatial learning behaviour in mice. Indole alkaloids- and phenolic fractions extracted from Chotoko also improved significantly the learning deficit. (2) Subchronic administration of Choto-san (0.5 g/kg, p.o.) caused a significant hypotensive effects in SHR. (3) Choto-san, Chotoko, and the phenolic constituent, (-) epicatechin, significantly protected the NG108-15 cell injury induced by $H_20_2$ exposure in vitro and also inhibited lipid peroxidation in the brain homogenate. (4) Indole alkaloids, rhynchophylline and isorhynchophylline (1-100 uM), reversibly reduced NMDA-induced current in the receptor-expressed Xenopus oocytes. These results suggest that anti-vascular dementia effects of Choto-san are mainly due to the effect of Chotoko. From these results, it is possible to make a novel dietary supplement through several extraction steps from Chotoko.

Sinensetin Inhibits Interleukin-6 in Human Mast Cell - 1 Via Signal Transducers and Activators of the Transcription 3 (STAT3) and Nuclear Factor Kappa B (NF-κB) Pathways

  • Chae, Hee-Sung;Kim, Young-Mi;Chin, Young-Won
    • Natural Product Sciences
    • /
    • 제23권1호
    • /
    • pp.1-4
    • /
    • 2017
  • Sinensetin, a pentamethoxyflavone, is known to exert various pharmacological activities including anti-angiogenesis, anti-diabetic and anti-inflammatory activities. However, its effects on the human mast cell - 1 (HMC-1) mediated inflammatory mechanism remain unknown. To explore the mediator and cellular inflammatory response of sinensetin, we examined its influence on phorbol 12-myristate 13-acetate (PMA) plus A23187 induced inflammatory mediator production in a human mast cell line. In this study, interleukin (IL)-6 production was measured using the enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction. Sinensetin inhibited PMA plus A23187 induced IL-6 production in a dose-dependent manner as well as IL-4, IL-5 and IL-8 mRNA expression. Furthermore, sinensetin inhibited signal transducer and activator of transcription 3 (STAT3) phosphorylation, suggesting that sinensetin inhibits the production of inflammatory mediators by blocking STAT3 phosphorylation. Moreover, sinensetin was found to inhibit nuclear factor kappa B activation. These findings suggest that sinensetin may be involved in the regulation of mast cell-mediated inflammatory responses.

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • 제26권1호
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.