• Title/Summary/Keyword: anti-bacterial substance

Search Result 19, Processing Time 0.021 seconds

Dyeing of Cotton Knitting Fabrics with An inorganic substance -Centering around Loess and Mud- (무기물을 이용한 면 편성물 염색성 -황토, 머드를 중심으로-)

  • 신인수;유복선;선우권
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.10
    • /
    • pp.1436-1442
    • /
    • 2002
  • In this paper, the effect of the loess and mud of an inorganic substance dyed on cotton knitting fabrics have been studied The structure and chemical composition of loess and mud was analyzed. And the Far-Infrared emissivity and emission power, colorfastness, anti-bacterial properties cotton knitting fabrics dyed with loess and mud were also evaluated. The structure and chemical composion of loess and mud was almost identical structure and to be alike main components were SiO$_2$, Al$_2$0$_3$ and Fe$_2$O$_3$. The cotton hitting fabrics dyed with loess and mud have good colorfastness and anti-bacterial properties. when the dyed fabrics was after-treated with diphenyl ether, the anti-bacterial property were improved. Far-Infrared emissivity and emission power cotton knitting fabrics dyed with loess and mud have very good.

Isolation of a Desmutagenic Substance Producing Microorganisms (항변이원성 물질을 생성하는 미생물의 분리방법)

  • 박용일;조문구;정호권
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.110-113
    • /
    • 1992
  • In the screening process of anti- or desmutagenic substance from the various microbial metabolites with the method of Ames and Rec-assay, a desmutagenic substance producing bacterial strain which inactivates the mitomycin C-induced mutagenicity was isolated and identified as Psudomonas sp. AM-10.

  • PDF

Dyeing of Cotton Knitted Fabrics using Mud (머드를 이용한 면 편성물 염색성)

  • 신인수;유복선
    • Korean Journal of Human Ecology
    • /
    • v.5 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • In this paper, the effect of the mud of an inorganic substance dyed on cotton knitted fabrics have been studied. The structure and chemical composition of mud was analyzed. And the far-infrared emissivity and emission power, colorfastness, anti-bacterial properties cotton knitted fabrics dyed with mud were also evaluated. The structure and chemical composition of mud was almost identical structure and to be alike main components were SiO2, A1203 and Fe203. The cotton knitted fabrics dyed with mud have good components and anti-bacterial properties. when the dyed fabrics was after-treated with diphenyl ether, the anti-bacterial property were improved. Far-infrared emissivity and emission fewer cotton knitted fabrics dyed with mud have very good.

  • PDF

Anti-Oral Microbial Effect of Ethanol Extract of Angelica gigas Nakai

  • Soon-Jeong Jeong
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2024
  • Background: The Korean name for Angelica gigas Nakai (AGN) is Cham-dang-gui, which grows naturally or is cultivated, and its dried roots are used in traditional herbal medicines. The AGN root exert various pharmacological effects. Despite the various pharmacological effects of the AGN root, there are no reports on its anti-oral microbial effects. The purpose of this study was to reveal the anti-oral microbial effect and the microbial and biochemical changes in oral microorganisms according to the concentration of the ethanol extract of AGN (EAGN) root, and to confirm the possibility of using EAGN as a plant-derived functional substance for controlling oral infectious microorganisms. Methods: Disk diffusion test, growth measurement, biofilm formation assay, and measurements of acid production and buffering capacity were performed to confirm the antibacterial effect of EAGN. Results: EAGN showed anti-oral bacterial effects against Streptococcus mutans and Aggregatibacter actinomycetemcomitans at all concentrations, with S. mutans showing a more susceptible effect at concentrations above 5.0 mg/ml and A. actinomycetemcomitans at 3.75 mg/ml. EAGN treatment significantly reduced A. actinomycetemcomitans growth at all concentrations tested. Biofilm formation was significantly reduced at concentrations above 3.75 mg/ml for S. mutans and 2.5 mg/ml for A. actinomycetemcomitans. Acid production in S. mutans and A. actinomycetemcomitans was significantly increased by treatment with EAGN, and the buffering capacities of S. mutans and A. actinomycetemcomitans increased from an EAGN concentration of 3.75 mg/ml and above. Conclusion: EAGN showed anti-oral bacterial effects against both S. mutans and A. actinomycetemcomitans at concentrations above 3.75 mg/ml, which were thought to be related to the inhibition of their growth and biofilm formation. Therefore, EAGN can be used as a safe functional substance derived from medicinal plants owing to its antibacterial effects against S. mutans and A. actinomycetemcomitans.

Characterization of Anti-Listerial Substance Produced by Lactobacillus salivarius LCH1227 (Lactobacillus salivarius LCH1230으로부터 생산된 Listeria 균 억제물질의 특성)

  • Shin, Yu-Ri;Lim, Kong-Boon;Chae, Jong-Pyo;Kang, Dae-Kyung
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.609-616
    • /
    • 2011
  • In this study, a LCH1227 bacterial strain that possesses anti-listerial activity was isolated from fermented food and identified as Lactobacillus salivarius LCH1227 based on its morphological and biochemical properties, as well as its 16S rRNA gene sequences. Anti-listerial substance also inhibited the growth of various Gram-positive bacteria, such as vancomycinresistant Enterococcus faecalis, Streptococcus agalactiae, Bacillus cereus, Lactobacillus fermentum. The highest level of production of antimicrobial substances from L. salivarius LCH1227 occurred during the early stationary phase. The antilisterial activity was found to be stable over a broad range of pH values (2.0-12.0) and after heat treatment. However, it was inactivated by proteolytic enzymes, indicating its proteinaceous nature. The apparent molecular mass of the partially purified anti-listerial substance, as measured by Tricine-SDS-PAGE, was approximately 5 kDa.

Characterization of a Substance from Photobacterium damsela subsp. piscicida that Non-specifically Binds to Streptavidin

  • Jung Tae Sung;Kim D. Thompson;Adams Aelexandra;Oh Myung Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.52-63
    • /
    • 2000
  • Non-specific reaction has been a problem in doing, especially, research and diagnosis for infectious agents. Avidin-biotin-peroxidase complex (ABC) techniques has widely been used to amplify a reaction. Photobacterium damse1a subsp. piscicdia (formerly Pasteurella piscicida) exhibited a capacity to bind with streptavidin non-specifically. The band, estimated 26 K Da in Western blotted paper, was blocked with biotin but incompletely. In an attempt to explore an involvement of the non-specific substance in attaching piscine cells, cell attachment test performed using anti- Ph. d. subsp piscicida sera raised mouse and rabbit exhibited slightly blocking effects for Mediterranean (1736) and significantly for Japanese (Sp 92144) isolate. Biotin decreased the attachment ability significantly for Sp92144 but it was not effective to 1736. Both isolates showed greatly enhanced attachment ability with poly-L-lysin. The non-specific binding substance was contained in bacterial extracellular products (ECPs). The substance was able to purified with 2-imminobiotin affinity column, the purified substance appeared to have 4 bands in silver staining, and had a carbohydrate branch. This purified substance showed cytotoxic effects selectively between 5 piscine cell lines. Moreover, it stimulated rainbow trout macrophage in terms of reduction of cytochrome cas well as yeast phagocytosis, significantly.

  • PDF

Effects of Lithospermum erythrorhizon on the cytokine gene expression in human keratinocytes (자초(紫草)가 HaCaT 세포의 사이토카인 유전자 발현에 미치는 영향)

  • Kang, Sang-Hoon;Kim, Gyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.26 no.1
    • /
    • pp.50-62
    • /
    • 2013
  • Objective : Propionibacterium acnes (P. acnes) is a major pathogenic bacteria for acne vulgaris. This study was performed to evaluate the effects of Lithospermum erythrorhizon extracts on the inflammatory cytokines gene expression by P. acnes in human keratinocytes, HaCaT cell line. Methods : Anti-bacterial activity and cytotoxicity of LE extracts was analyzed by agar plate culture and XTT assay. The cytokines gene expressions were assessed by real time RT-PCR for IL-8, MCP-1 and TNF-${\alpha}$. During the cell culture and treatments, amounts of secreted TNF-${\alpha}$ were measured by ELISA. Translocation of transcription factor NF-${\kappa}B$ from cytoplasm into nucleus was observed by immunocytochemistry and confocal microscopy. Results : There were no anti-bacterial effects and cytotoxicity as high as $1,000{\mu}g/ml$ of LE extracts in XTT assay. Transcription levels of inflammatory cytokines, IL-8, MCP-1 and TNF-${\alpha}$ were increased by P. acnes in HaCaT. LE extracts decreased the upregulated gene transcription levels. However, amounts of secreted TNF-${\alpha}$ were similar in HaCaT cells with P. acnes and LE extracts. Translocation of NF-${\kappa}B$ into nucleus by P. acnes was significantly inhibited by LE extracts. Conclusions : From the results of this study, LE extracts have anti-inflammatory effects on HaCaT cells by P. acnes that decreased the mRNA expressions of IL-8, MCP-1 and TNF-${\alpha}$. This anti-inflammatory effects of LE extracts could provide the potential of therapeutic substance for acne vulgaris.

Selection of Acid-tolerant and Hetero-fermentative Lactic Acid Bacteria Producing Non-proteinaceous Anti-bacterial Substances for Kimchi Fermentation (비단백질성 항균물질을 생산하는 김치발효용 내산성 Hetero 발효형 유산균주 선발)

  • Kim, Hye-Rim;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.119-127
    • /
    • 2013
  • Twenty-three strains of Leuconostoc species and 45 strains of Weissella species inhibiting the growth of Lactobacillus sakei, one of the most populous lactic acid bacteria in over-ripened kimchi, were isolated from kimchi in our previous study. Among these hetero-fermentative 68 strains, Leuconostoc mesenteroides CK0128, Weissella cibaria CK0633, and W. cibaria KK0797 exhibited a relatively high survival rate in MRS medium, which was adjusted to pH 4.3 using an acid mixture consisting of acetic and lactic acids, and produced a large amount of exopolysaccharides. The culture supernatants of 3 strains were fractionated by a molecular weight cutter and lyophilized. The fractions with a molecular weight smaller than 3,000 Da showed antagonistic activity against Staphylococcus aureus and Lb. sakei. The anti-bacterial substances were very stable to heat treatments ($121^{\circ}C$, 15 min) and active at acidic conditions below pH 5. ${\alpha}$-Amylase, lipase, and proteolytic enzymes (proteinase K and pepsin) did not affect their activities. These non-proteinaceous anti-bacterial substances inhibited the growth of several food pathogens.

Anti-microbial, Anti-oxidant Effect of Portulacae Herba ethanol Extract (마치현 에탄올 추출물의 항균, 항산화 효과)

  • Gwak, Jeong Sim;Kim, Chun-Dug
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.975-984
    • /
    • 2018
  • The purpose of that was to investigate the potential of P. Herba extracts as phytonutrient active ingredients. In order to elucidate the P.Herba ethanol extracts were examined DPPH radical scavenging activity, NO production, protective effects against oxidative stress in HaCaT cells, anti-inflammatory activity, antimicrobial activity, anti-allergic effects, and inhibition of ${\beta}$-hexosaminidase expression. The antioxidative activity of the P. Herba extracts was compared, and the antioxidative activity of the ethanol extract was found to be superior. No significant cytotoxicity was observed in HaCaT, RAW 264.7, and RBL-2H3 cells. The protective effect of the extracts against oxidative stress induced by hydrogen peroxide ($H_2O_2$) was examined in HaCaT cells, and it was found to be 83% This concentration refers to which extract ethanol at $100{\mu}g/mL$. The anti-inflammatory activity of the extracts was examined in RAW 264.7 cells, and NO production was suppressed even at low concentrations. In addition, the concentration-dependent antimicrobial activities of the extracts were demonstrated in several bacterial strains, such as those of S.aureus, S.epidermidis and P. acnes. Based on the findings from this study, Portulacae Herba extracts could be used as physiological active substance that possess antioxidative, anti-inflammatory, and antimicrobial properties.

Antibacterial Effect of Antibacterial Substance Produced by Lactobacillus amylovorus IMC-1 against Food Spoilage Bacteria (Lactobacillus amylovorus IMC-1에 의해서 생산되는 항균성 물질의 식품 오염세균에 대한 항균 효과)

  • Mok, Jong-Soo;Kim, Poong-Ho;Yu, Hyen-Duk;Kim, Ji-Hoe;Lee, Hee-Jung;Kim, Young-Mog
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.346-351
    • /
    • 1999
  • To develop a lactic starter to produce antimicrobial substance for inhibiting the growth of a variety of foodborne spoilage bacteria in fermented foods, we investigated the anti-bacterial effect of the antibacterial substance, produced by Lactobacillus amylovorus IMC-1, against foodborne spoilage strains, and its sensitivity on the treatment of proteolytic enzymes. L. amylovorus IMC-1, which was isolated from a traditional cheese in Inner Mongolia, produced a maximum amount of antibacterial substance in the skim milk medium after 72 h incubation at 37$^{\circ}C$, and further incubation resulted in the same activity. The substance obtained from gel filtration inhibited all strains used such as Bacillus subtilis IFO 3025, Staphylococcus aureus IAM 1011, Listeria monocytogenes VTU 206, Escherichia coli RB, and Pseudomonas fragi IFO 3458 at the concentration of 20 units/ml. This substance was found to show bactericidal action against B. subtilis, E. coli, and Ps. fragi, and bacteriostatic activity against both Staph. aureus and L. monocytogenes. The bactericidal action was due to cellular Iysis. The substance is not organic acid, hydrogen peroxide and proteinaceous compound.

  • PDF