• 제목/요약/키워드: anti-adipogenesis

검색결과 221건 처리시간 0.023초

Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake

  • Hasegawa, Yasushi;Nakagawa, Erina;Kadota, Yukiya;Kawaminami, Satoshi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.111-118
    • /
    • 2017
  • Objective: Adipose tissue plays a key role in the development of obesity and diabetes. We previously reported that lignosulfonic acid suppresses the rise in blood glucose levels through the inhibition of ${\alpha}$-glucosidase activity and intestinal glucose absorption. The purpose of this study is to examine further biological activities of lignosulfonic acid. Methods: In this study, we examined the effect of lignosulfonic acid on differentiation of 3T3-L1 cells. Results: While lignosulfonic acid inhibited proliferation (mitotic clonal expansion) after induction of differentiation, lignosulfonic acid significantly increased the size of accumulated lipid droplets in the cells. Semi-quantitative reverse transcription polymerase chain reaction analysis showed that lignosulfonic acid increased the expression of the adipogenic transcription factor, peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$), leading to increased glucose transporter 4 (Glut-4) expression and 2-deoxyglucose uptake in differentiated 3T3-L1 cells. Additionally, feeding lignosulfonic acid to diabetic KK-Ay mice suppressed increase of blood glucose level. Conclusion: Lignosulfonic acid may be useful as a functional anti-diabetic component of food.

Inhibitory Effects of Lactobacillus plantarum Q180 on Lipid Accumulation in HepG2 Cells

  • Chu, Jaeryang;Joung, Hyunchae;Kim, Byung-Kook;Choi, In-Suk;Park, Tae-Sik
    • 한국식품영양학회지
    • /
    • 제32권6호
    • /
    • pp.738-744
    • /
    • 2019
  • Recently, the prevalence of hyperlipidemia has been increasing, and consequently, the need to identify safe and effective treatments to control this chronic disease has also increased. The beneficial effects of probiotics have been revealed by several studies over the past few years, including their effects on hypertriglyceridemia. However, the mechanisms of action of probiotics are still unclear. The anti-obesity effects of Lactobacillus plantarum Q180 on lipid accumulation have already been demonstrated using an in vitro HepG2 cell model, and therefore, we investigated its efficacy and mechanism of action. Lipid accumulation was induced in HepG2 cells by palmitic acid treatment and then the cells were incubated with L. plantarum Q180 lysate or supernatant to investigate changes in lipid accumulation and expression of lipid metabolism-related genes. The results showed that the L. plantarum Q180-treated group exhibited significantly lower levels of lipid accumulation and mRNA expression of lipid synthesis- and adipogenesis-related genes than the palmitic acid-treated group did. These results indicate that L. plantarum Q180 may contribute to alleviating hypertriglyceridemia by inhibiting lipid synthesis.

A Novel PPARγ Agonist, SP1818, Shows Different Coactivator Profile with Rosiglitazone

  • Park, Yun-Sun;Choi, Ji-Won;Kim, Kun-Yong;Lim, Jong-Seok;Yoon, Suk-Joon;Yang, Young
    • Biomolecules & Therapeutics
    • /
    • 제18권1호
    • /
    • pp.77-82
    • /
    • 2010
  • Peroxisome proliferator-activated receptor $\gamma$ (PPAR${\gamma}$) is a ligand-activated transcription factor that is used as a target for anti-diabetic drug development. In a search for novel PPAR${\gamma}$ agonists, the $\beta$-carboxyethyl-rhodanine derivative SP1818 was identified. We report here the characteristics of SP1818 as a selective PPAR${\gamma}$ agonist. In transactivation assays, SP1818 selectively activated PPAR${\gamma}$, but the degree of PPAR${\gamma}$ stimulation was less than with $1{\mu}M$ rosiglitazone. SP1818 also stimulated glucose uptake in a concentration-dependent manner. The adipocyte differentiation markers adiponectin, scavenger receptor CD36 and aP2 were weakly induced by treatment with SP1818, and TRAP220 subunit was specifically recruited into PPAR${\gamma}$ activated by rosiglitazone but not PPAR${\gamma}$ activated by SP1818.

가지 물추출물의 3T3-L1 지방전구세포 분화 억제효능 (Inhibitory Effect of Eggplant Extract on Adipocyte Differentiation in 3T3-L1 Cells)

  • 이미경;류청;황방연;김선여;이재학
    • 약학회지
    • /
    • 제55권4호
    • /
    • pp.309-313
    • /
    • 2011
  • Abnormal growth of adipocyte characterized by increased cell numbers and differentiation is considered as an major pathological characteristic feature in obesity. Thus, inhibition of mitogenesis of preadipocytes and their differentiation to adipocytes would be beneficial for the prevention and inhibition of obesity. In the present study, we attempted to evaluate anti-adipogenic activity of eggplants (the fruits of Solanum melongena L.) employing preadipocytes cell line, 3T3-L1 as an in vitro assay system. Water extract of eggplants significantly inhibited adipocyte differentiation when treated during adipocyte differentiation process, as assessed by measuring fat accumulation using Oil Red O staining. Eggplant extract, however, showed little effects on fully differentiated adipocytes. Eggplant didn't show significant toxicity up to 500 ${\mu}g$/ml to the 3T3-L1 cells. Further studies with interval treatment demonstrated that eggplant exerted inhibitory activity on adipocyte differentiation via acting on early stage of adipogenesis. Conclusively, eggplants are suggested to be beneficial for the prevention of obesity.

Optimization of adipogenic differentiation conditions for canine adipose-derived stem cells

  • Kim, Jong-Yeon;Park, Eun-Jung;Kim, Sung-Min;Lee, Hae-Jeung
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.53.1-53.13
    • /
    • 2021
  • Background: Canine adipose-derived stem cells (cADSCs) exhibit various differentiation properties and are isolated from the canine subcutaneous fat. Although cADSCs are valuable as tools for research on adipogenic differentiation, studies focusing on adipogenic differentiation methods and the underlying mechanisms are still lacking. Objectives: In this study, we aimed to establish an optimal method for adipogenic differentiation conditions of cADSCs and evaluate the role of peroxisome proliferator-activated receptor gamma (PPARγ) and estrogen receptor (ER) signaling in the adipogenic differentiation. Methods: To induce adipogenic differentiation of cADSCs, 3 different adipogenic medium conditions, MDI, DRI, and MDRI, using 3-isobutyl-1-methylxanthine (M), dexamethasone (D), insulin (I), and rosiglitazone (R) were tested. Results: MDRI, addition of PPARγ agonist rosiglitazone to MDI, was the most significantly facilitated cADSC into adipocyte. GW9662, an antagonist of PPARγ, significantly reduced adipogenic differentiation induced by rosiglitazone. Adipogenic differentiation was also stimulated when 17β-estradiol was added to MDI and DRI, and this stimulation was inhibited by the ER antagonist ICI182,780. Conclusions: Taken together, our results suggest that PPARγ and ER signaling are related to the adipogenic differentiation of cADSCs. This study could provide basic information for future research on obesity or anti-obesity mechanisms in dogs.

Nelumbo nucifera Leaf Extract Regulates Lipid Metabolism and Differentiation in 3T3-L1 Adipocytes and db/db Mice

  • Chul-Min Park;Oh Jin Min;Min-Seok Kim;Bhesh Raj Sharma;Dong Wook Kim;Dong Young Rhyu
    • Natural Product Sciences
    • /
    • 제28권4호
    • /
    • pp.161-167
    • /
    • 2022
  • Obesity is a complex metabolic disorder that increases the risk for type 2 diabetes, hyperlipidemia, hypertension, and atherosclerosis. In this study, we evaluated the anti-obesity effects of Nelumbo nucifera leaf (NL) extract in 3T3-L1 adipocytes and obese db/db mice. NL extract among various parts (leaf, seed, and root) of N. nucifera most effectively reduced adipogenesis via inhibiting CCAAT enhancer binding protein α (C/EBPα) and peroxisome proliferator activated receptor γ (PPARγ) expression in 3T3-L1 adipocytes. The addition of NL extract enhanced the protein expression of uncoupling protein 2 (UCP2) as compared to untreated 3T3-L1 adipocytes. The oral administration of NL extract (100 mg/kg BW) significantly reduced food efficacy ratio, body weight, and face or total cholesterol level in obese db /db mice. Also, administration of NL extract significantly decreased adipocyte size and C/EBPα or PPARγ expression in the adipose tissues as compared with control (obese db/db mice). Therefore, our results suggest that NL extract among various parts of N. nucifera could be used as a functional food ingredient for the prevention and treatment of metabolic diseases including obesity and diabetes.

Anti-hyperlipidemic Effect of Polyphenol Extract (SeapolynolTM) and Dieckol Isolated from Ecklonia cava in in vivo and in vitro Models

  • Yeo, A-Reum;Lee, Jung-Lim;Tae, In-Hwan;Park, Seok-Rae;Cho, Young-Ho;Lee, Bong-Ho;Shin, Hyeon-Cheol;Kim, Seong-Ho;Yoo, Yung-Choon
    • Preventive Nutrition and Food Science
    • /
    • 제17권1호
    • /
    • pp.1-7
    • /
    • 2012
  • The inhibitory effect of polyphenol extracts (Seapolynol$^{TM}$, SPN) of the marine brown algae Ecklonia cava and dieckol, a major component of SPN, on hyperlipidemia was investigated in ICR mice fed a high-fat diet (HFD) for five weeks. For analysis of the anti-hyperlipidemic effects of SPN and dieckol, these two agents were given orally on a daily basis to HFD-fed mice for four weeks, starting one week after the beginning of HFD feeding. Groups administered with SPN as well as dieckol showed lower body weight gains than the HFD only group. Administration of SPN and dieckol also resulted in a significant reduction of the level of total cholesterol (TCHO), triglyceride (TG), and low-density lipoprotein (LDL) cholesterol in the serum of HFD-fed mice. In Oil Red O staining using 3T3-L1 preadipocytes, it was shown that both SPN and dieckol markedly inhibited lipid accumulation of 3T3-L1 cells. Furthermore, SPN and dieckol (50 ${\mu}g$/mL) significantly inhibited 3-hydroxyl-methyl glutaryl coenzyme A (HMGCoA) reductase activity in vitro. Taken together, these results suggest that polyphenols of Ecklonia cava (SPN) and dieckol reduce body weight gain and fat accumulation in HFD-induced obese mice, and that their hypolipidemic effect is related to the inhibition of adipogenesis of adipocytes and HMGCoA reductase activity.

칼슘과 제니스테인 섭취가 고지방식이로 유도된 비만 모델 마우스의 체지방과 지질대사에 미치는 영향 (Effects of Calcium and Genistein on Body Fat and Lipid Metabolism in High Fat-induced Obese Mice)

  • 김미현;김설희;박현우;김완기;이연숙
    • Journal of Nutrition and Health
    • /
    • 제39권8호
    • /
    • pp.733-741
    • /
    • 2006
  • The study was conducted to investigate the effects of dietary calcium and soy isoflavone on body fat and lipid metabolism in high fat-induced obesity. Four week old female C57/BL6J mice, known as a good model of diet-induced obesity, were fed low Ca and high fat diet for 6 weeks. After induced obesity, mice were divided into six groups according to diets varying calcium contents (0.1 or 1.5%) and genistein contents (0 or 500 or 1,000 ppm). Body weight, fat pad (perirenal fat and parameterial fat), adipocyte size, serum total lipid and total cholesterol were significantly decreased by both high Ca intake and genistein supplementation. However, the effect of genistein supplementation showed in low Ca-fed groups. Serum LDL-cholesterol and TG were significantly decreased by high Ca intake and genistein supplementation, respectively. In liver, lipogenic enzymes (fatty acid synthase and malic enzyme) activity and TG were significantly decreased by both high Ca intake and genistein supplementation. This inhibitory effect of genistein on lipogenic enzymes showed in low Ca-fed groups. But liver total cholesterol and total lipid were significantly decreased by high Ca intake and genistein supplementation, respectively. Fecal excretion of total lipid, total cholesterol and TG were significantly increased by high Ca intake, not by genistein supplementation. In conclusion, high calcium intake and genistein supplement may be beneficial for suppression of obesity through direct anti-adipogenesis by decreasing fat weight and size and indirect anti-lipo-genesis by inhibiting lipogenic enzymes activity and improving lipid profile.

Anti-adipogenic and Pro-osteoblastogenic Activities of Spergularia marina Extract

  • Karadeniz, Fatih;Kim, Jung-Ae;Ahn, Byul-Nim;Kim, Mihyang;Kong, Chang-Suk
    • Preventive Nutrition and Food Science
    • /
    • 제19권3호
    • /
    • pp.187-193
    • /
    • 2014
  • This is an Open Access article distributed under the terms of the Creative Commons Attribution For decades, Spergularia marina, a local food that is popular in South Korea, has been regarded as a nutritious source of amino acids, vitamins, and minerals. While several halophytes are reported to possess distinct bioactivities, S. marina has yet to be promoted as a natural source of bioactives. In this study, the effects of S. marina on the adipogenic differentiation of 3T3-L1 fibroblasts and the osteoblastic differentiation of MC3T3-E1 pre-osteoblasts and C2C12 myoblast cells were evaluated. The anti-adipogenic effect of S. marina was assessed by measuring lipid accumulation and adipogenic differentiation marker expression. S. marina treatment significantly reduced lipid accumulation and notably decreased the gene levels of peroxisome proliferator-activated receptor ${\gamma}$, CCAAT/enhancer-binding protein ${\alpha}$, and sterol regulatory element binding protein 1c. In addition, S. marina enhanced osteoblast differentiation, as indicated by increased alkaline phosphatase activity and increased levels of osteoblastogenesis indicators, namely bone morphogenetic protein-2, osteocalcin, and type I collagen. In conclusion, S. marina could be a source of functional food ingredients that improve osteoporosis and obesity. Further studies, including activity-based fractionation, will elucidate the mechanism of action and active ingredients of S. marina, which would provide researchers with a better understanding of the nutraceutical and therapeutic applications of S. marina.

산사의 장내 미생물 조절을 통한 항비만 효과 (Anti-obesity Effect of Crataegus pinnatifida through Gut Microbiota Modulation in High-fat-diet Induced Obese Mice)

  • 김민지;최유라;신나래;이명종;김호준
    • 한방재활의학과학회지
    • /
    • 제29권4호
    • /
    • pp.15-27
    • /
    • 2019
  • Objectives This study was performed to evaluate anti-obesity effects of Crataegus pinnatifida (CP) on high-fat-diet induced obese mice. Methods The experimental animals were divided into four groups: normal diet (NOR) group, high fat diet (HFD) group, HFD+Xenical (XEN) group, and HFD+CP (CP) group. NOR group was fed a normal diet and the other three groups were fed high fat diet during the experiment. After the first two weeks of diet, XEN group and CP group were administered with XEN or CP for seven weeks, respectively. After that, we measured body weight, liver weight, fat weight, food intake, and serum concentrations of lipids and liver enzymes. Also the liver, intestine, fat tissue was removed to estimate the obesity-related mRNA expressions and the stool sample was collected to analyze the gut microbiota. Results We found that body weight, fat weight, and triglyceride level were decreased significantly in CP group compared to HFD group. Also CP significantly suppressed gene expressions associated with lipogenesis and inflammation, and increased gene expressions of browning of white adipose tissue and mitochondrial biogenesis. Moreover, it shifted the microbial diversity closer to that of NOR group and increased Firmicutes/Bacteriodetes ratio. Conclusions These results suggest that CP decrease body weight, fat weight and serum triglyceride. Also it inhibit inflammation and adipogenesis, altering gut microbial diversity and abundance. In conclusion, CP could be used as a therapeutic drug for obesity via gut microbiota modulation.