• Title/Summary/Keyword: anthocyanidin synthase

Search Result 5, Processing Time 0.023 seconds

Molecular Cloning and Function Analysis of an Anthocyanidin Synthase Gene from Ginkgo biloba, and Its Expression in Abiotic Stress Responses

  • Xu, Feng;Cheng, Hua;Cai, Rong;Li, Lin Ling;Chang, Jie;Zhu, Jun;Zhang, Feng Xia;Chen, Liu Ji;Wang, Yan;Cheng, Shu Han;Cheng, Shui Yuan
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.536-547
    • /
    • 2008
  • Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase), a 2-oxoglutarate iron-dependent oxygenase, catalyzed the penultimate step in the biosynthesis of the anthocyanin class of flavonoids, from the colorless leucoanthocyanidins to the colored anthocyanidins. The full-length cDNA and genomic DNA sequences of ANS gene (designated as GbANS) were isolated from Ginkgo biloba for the first time. The full-length cDNA of GbANS contained a 1062-bp open reading frame (ORF) encoding a 354-amino-acid protein. The genomic DNA analysis showed that GbANS gene had three exons and two introns. The deduced GbANS protein showed high identities to other plant ANSs. The conserved amino acids (H-X-D) ligating ferrous iron and residues (R-X-S) participating in 2-oxoglutarate binding were found in GbANS at the similar positions like other ANSs. Southern blot analysis indicated that GbANS belonged to a multi-gene family. The expression analysis by real-time PCR showed that GbANS expressed in a tissue-specific manner in G. biloba. GbANS was also found to be up-regulated by all of the six tested abiotic stresses, UV-B, abscisic acid, sucrose, salicylic acid, cold and ethylene, consistent with the promoter region analysis of GbANS. The recombinant protein was successfully expressed in E. coli strain with pET-28a vector. The in vitro enzyme activity assay by HPLC indicated that recombinant GbANS protein could catalyze the formation the cyanidin from leucocyanidin and conversion of dihydroquercetin to quercetin, suggesting GbANS is a bifunctional enzyme within the anthocyanidin and flavonol biosynthetic pathway.

Identification of chromosomal translocation causing inactivation of the gene encoding anthocyanidin synthase in white pomegranate (Punica granatum L.) and development of a molecular marker for genotypic selection of fruit colors

  • Jeong, Hyeon-ju;Park, Moon-Young;Kim, Sunggil
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.857-864
    • /
    • 2018
  • Previous studies have not detected transcripts of the gene encoding anthocyanidin synthase (ANS) in white pomegranates (Punica granatum L.) and suggest that a large-sized insertion in the coding region of the ANS gene might be the causal mutation. To elucidate the identity of the putative insertion, 3887-bp 5' and 3392-bp 3' partial sequences of the insertion site were obtained by genome walking and a gene coding for an expansin-like protein was identified in these genome-walked sequences. An identical protein (GenBank accession OWM71963) isolated from pomegranate was identified from BLAST search. Based on information of OWM71963, a 5.8-Mb scaffold sequence with genes coding for the expansin-like protein and ANS were identified. The scaffold sequence assembled from a red pomegranate cultivar also contained all genome-walked sequences. Analysis of positions and orientations of these genes and genome-walked sequences revealed that the 27,786-bp region, including the 88-bp 5' partial sequences of the ANS gene, might be translocated into an approximately 22-kb upstream region in an inverted orientation. Borders of the translocated region were confirmed by PCR amplification and sequencing. Based on the translocation mutation, a simple PCR codominant marker was developed for efficient genotyping of the ANS gene. This molecular marker could serve as a useful tool for selecting desirable plants at young seedling stages in pomegranate breeding programs.

Characterization of flavonoids specific gene expression in the petals of Dianthus caryophyllus (carnation) (카네이션 (Dianthus caryophillus)의 색소 발현체계 분석)

  • Hur, Suel-Hye;Ahn, Byung-Joon;Joung, Hyang-Young;Hyung, Nam-In;Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.415-422
    • /
    • 2009
  • This study aimed to develop carnation cultivars with new coloring system. We used four genes of Petunia hybrida - chalcone synthase (CHS), flavanone 3-hydroxylase (FHT), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) - as probes, in order to isolate four genes from carnations (Dianthus Caryophyllus). The isolated genes were used as probes in order to select mutants out of collected carnations, using Northern blot analysis. The Northern blot analysis revealed 10 DFR mutants - Gumbyul, Eunbyul, Ballatyne, Crystal, Eugenia, Koreno, Imp. White Sim, West Crystal, White Alpine, and White Charotte. Six among the selected 10 cultivarswere excluded from the target cultivars, because Eugenia, Imp. White Sim, and White Alpine were proved to be double mutants of DFR and ANS, Koreno was considered to be a double mutant of DFR and CHS, and Gumbyul and Ballatyne were proved to be double mutants of DFR and CHI (Chalcone isomerase). Consequently, we selected five DFR mutants, including Virginie, which was already selected as a DFR mutant. Finally, we measured DFR activities in order to confirm the selection, and the results showed that all of the five cultivars - Eunbyul, Crystal, West Crystal, White Charotte, and Virginie - had got no DFR activity.

Marker-assisted Genotype Analysis of Bulb Colors in Segregating Populations of Onions (Allium cepa)

  • Kim, Sunggil;Bang, Haejeen;Yoo, Kil-Sun;Pike, Leonard M.
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.192-197
    • /
    • 2007
  • Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.