• 제목/요약/키워드: ant system

검색결과 207건 처리시간 0.024초

그래프 착색 문제에 적용된 효과적인 Ant Colony Algorithm에 관한 연구 (A Effective Ant Colony Algorithm applied to the Graph Coloring Problem)

  • 안상혁;이승관;정태충
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.221-226
    • /
    • 2004
  • 개미 집단 시스템(Ant Colony System ACS) 알고리즘은 조합 최적화 문제를 해결하기 위한 새로운 메타 휴리스틱 방법이다. 이것은 그리디 탐색뿐만 아니라 긍정적 피드백에 의한 탐색을 이용한 모집단에 근거한 접근법으로 조합 최적화 문제를 해결하기 위해 제안되었다. 최근까지 인접한 노드($v_i, v_j$)가 같은 색을 갖지 않도록 그래프 G의 노드 V에 색을 배정하는 문제인 그래프 착색 문제의 최적 해를 구하기 위하여 다양한 접근 방식들과 해법들이 제안되고 있다. 본 논문에서는 기존의 그래프 착색 문제의 해법으로 잘 알려진 그리디 알고리즘, 시뮬레이티드어넬링, 타부 탐색 등이 아닌 개미 집단 시스템 알고리즘으로 해법을 구하는 방법인 ANTCOL 알고리즘을 소개하고, ANTCOL을 해결하기 위해 제안된 기존의 생성 함수들(ANT_Random ANT_LF, ANT_SL, ANT_DSATUR, ANT_RLF)과, 본 논문에서 새롭게 제안된 방법으로 RLF에 무작위 기법을 적용한 XRLF를 생성 함수로 사용한 ANT_XRLF 방법과 ANT_XRLF에 재검색을 추가한 방법(ANT_XRLF_R)의 그래프 착색 결과 및 실행 시간을 비교, 분석하여 제안된 방법이 더 빠르게 수렴할 수 있음을 실험을 통해 알 수 있었다.

개미 시스템을 이용한 무선 센서 네트워크 라우팅 알고리즘 개발 (Ant-based Routing in Wireless Sensor Networks)

  • 옥창수
    • 한국경영과학회지
    • /
    • 제35권2호
    • /
    • pp.53-69
    • /
    • 2010
  • This paper proposes an ant-based routing algorithm, Ant System-Routing in wireless Senor Networks(AS-RSN), for wireless sensor networks. Using a transition rule in Ant System, sensors can spread data traffic over the whole network to achieve energy balance, and consequently, maximize the lifetime of sensor networks. The transition rule advances one of the original Ant System by re-defining link cost which is a metric devised to consider energy-sufficiency as well as energy-efficiency. This metric gives rise to the design of the AS-RSN algorithm devised to balance the data traffic of sensor networks in a decentralized manner and consequently prolong the lifetime of the networks. Therefore, AS-RSN is scalable in the number of sensors and also robust to the variations in the dynamics of event generation. We demonstrate the effectiveness of the proposed algorithm by comparing three existing routing algorithms: Direct Communication Approach, Minimum Transmission Energy, and Self-Organized Routing and find that energy balance should be considered to extend lifetime of sensor network and increase robustness of sensor network for diverse event generation patterns.

Ant-Q 학습을 이용한 Gale-Shapley 문제 해결에 관한 연구 (Solving the Gale-Shapley Problem by Ant-Q learning)

  • 김현;정태충
    • 정보처리학회논문지B
    • /
    • 제18B권3호
    • /
    • pp.165-172
    • /
    • 2011
  • 본 논문에서는 생물학의 개미들이 학습을 통해 목표를 획득하는 방법을 응용한 Ant-Q 알고리즘(Ant Q learning System)[1]을 Gale-Shapley[2]알고리즘을 통해 제시되었던 안정된 결혼문제(SMP: Stable Marriage Problem)[3]의 새로운 해법을 찾기 위해 적용 하였다. SMP는 남성($m_i$)들과 여성($w_j$)들은 각자 자신이 좋아하는 이상형에 대한 선호도(PL: preference list)를 바탕으로 안정이면서도 최선의 짝을 찾는 것을 목표로 하고 있다. Gale-Shapley 알고리즘은 남성(혹은 여성) 위주로 안정적(stability)인 짝(Matching)을 성사시키므로 다양한 조건을 수용하지 못한다. 본 논문에 적용된 Ant-Q는 개미(Ant)의 페로몬을 활용한 학습인 ACS(Ant colony system)에 강화학습의 일종인 Q-학습[9]을 추가한 방법으로, SMP의 새로운 해법을 찾을 수 있었다.

Symmetric Traveling Salesman Problem을 해결하기 위해 Ant Colony System에서의 효과적인 최적화 방법에 관한 연구 (An Effective Ant Colony System Optimization for Symmetric Traveling Salesman Problem)

  • 정태웅;이승관;정태충
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.321-324
    • /
    • 2000
  • 조합 최적화 문제인 Traveling Salesman problems(TSP)을 Genetic Algorithm(GA)[3]과 Local Search Heuristic Algorithm[8]을 이용하여 접근하는 것은 최적해를 구하기 위해 널리 알려진 방법이다. 본 논문에서는 TSP문제를 해결하기 위한 또 다른 접근법으로, 다수의 Ant들이 Tour들을 찾는 ACS(Ant Colony System) Algorithms[4][6][7]을 소개하고, ACS에서 Global Optima를 찾는 과정에서, 이미 이루어져 있는 Ant들의 Tour결과들을 서로 비교한다. Global Updating Rule에 의해 Global Best Tour 에 속해 있는 각 Ant Tour의 edge들을 update하는 ACS Algorithm에, 각 루프마다 Ant Tour들을 우성과 열성 인자들로 구분하고, 각각의 우성과 열성 인자들에 대해서 Global Updating Rule에 기반한 가중치를 적용(Weight Updating Rule)하므로서 기존의 ACS Algorithm보다 효율적으로 최적 해를 찾아내는 방법에 대해서 논하고자 한다.

  • PDF

개미 집단 시스템에서 TD-오류를 이용한 강화학습 기법 (A Reinforcement Loaming Method using TD-Error in Ant Colony System)

  • 이승관;정태충
    • 정보처리학회논문지B
    • /
    • 제11B권1호
    • /
    • pp.77-82
    • /
    • 2004
  • 강화학습에서 temporal-credit 할당 문제 즉, 에이전트가 현재 상태에서 어떤 행동을 선택하여 상태전이를 하였을 때 에이전트가 선택한 행동에 대해 어떻게 보상(reward)할 것인가는 강화학습에서 중요한 과제라 할 수 있다. 본 논문에서는 조합최적화(hard combinational optimization) 문제를 해결하기 위한 새로운 메타 휴리스틱(meta heuristic) 방법으로, greedy search뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 Traveling Salesman Problem(TSP)를 풀기 위해 제안된 Ant Colony System(ACS) Algorithms에 Q-학습을 적용한 기존의 Ant-Q 학습방범을 살펴보고 이 학습 기법에 다양화 전략을 통한 상태전이와 TD-오류를 적용한 학습방법인 Ant-TD 강화학습 방법을 제안한다. 제안한 강화학습은 기존의 ACS, Ant-Q학습보다 최적해에 더 빠르게 수렴할 수 있음을 실험을 통해 알 수 있었다.

멀티캐스트 라우팅을 위한 Ant Colony System 설계에 대한 연구 (A Study of Ant Colony System Design for Multicast Routing)

  • 이성근;한치근
    • 정보처리학회논문지A
    • /
    • 제10A권4호
    • /
    • pp.369-374
    • /
    • 2003
  • 조합 최적화 문제를 풀기 위한 개미 알고리즘(Ant Algorithm)은 실제 개미 집단의 행동을 모방하여 만들어진 것이다. Ant Colony System(ACS)은 여러 유형의 개미 알고리즘 중 비교적 최근에 소개된 것이다. ACS의 설계를 위해 순회 외판원 문제(Traveling Salesman Problem, TSP)를 사용하여 실험을 수행하였다. ACS를 다양한 조합 최적화 문제에 적용할 때 순회 외판원 문제에 사용된 ACS의 파라미터와 전략을 사용하고 있다. 본 논문에서는 조합 최적화 문제들 중 하나인 멀티캐스팅 라우팅 문제를 해결하기 위해 ACS를 이용하였다. 멀티캐스트 라우팅은 데이터를 하나의 송신자에서 여러 수신자들로 보내기 때문에 모든 노드를 포함하는 순회 외판원 문제와는 속성이 다르고, 송신자에서 각 수신자에 하나의 최단경로를 설정하는 문제와도 다른 속성을 지니고 있다. 본 논문에서는 멀티캐스트 라우팅에 ACS를 적용하기 위해 알고리즘의 동작을 수정하고, 수정한 ACS의 성능을 향상시키기 위한 최적의 전략과 파라미터를 설계한다.

무선통신네트워크에서 위치관리 최적설계를 위한 최대-최소개미시스템과 랭크개미시스템의 혼합 방법 (Hybrid Method of Max-Min Ant System and Rank-based Ant System for Optimal Design of Location Management in Wireless Network)

  • 김성수;김형준;안준식;김일환
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1309-1314
    • /
    • 2007
  • The assignment of cells to reporting or non-reporting cells is an NP-hard problem having an exponential complexity in the Reporting Cell Location Management (RCLM) system. Frequent location update may result in degradation of quality of service due to interference. Miss on the location of a mobile terminal will necessitate a search operation on the network when a call comes in. The number of reporting cells and which cell must be reporting cell should be determined to balance the registration (location update) and search (paging) operations to minimize the cost of RCLM system. T1is paper compares Max-Min ant system (MMAS), rank-based ant system (RAS) and hybrid method of MMAS and RAS that generally used to solve combinatorial optimization problems. Experimental results demonstrate that hybrid method of MMAS and RAS is an effective and competitive approach in fairly satisfactory results with respect to solution quality and execution time for the optimal design of location management system.

Ant Colony System에서 효율적 경로 탐색을 위한 지역갱신과 전역갱신에서의 추가 강화에 관한 연구 (A Study about Additional Reinforcement in Local Updating and Global Updating for Efficient Path Search in Ant Colony System)

  • 이승관;정태충
    • 정보처리학회논문지B
    • /
    • 제10B권3호
    • /
    • pp.237-242
    • /
    • 2003
  • Ant Colony System(ACS) 알고리즘은 조합 최적화 문제를 해결하기 위한 메타 휴리스틱 탐색 방법이다. 이것은 greedy search뿐만 아니라 exploitation of positive feedback을 사용한 모집단에 근거한 접근법으로 Traveling Salesman Problem(TSP)를 풀기 위해 제안되었다. 본 논문에서는 전통적 전역갱신과 지역갱신 방법에 개미들이 방문한 각 간선에 대한 방문 횟수를 강화값으로 추가한 새로운 방법의 ACS를 제안한다. 그리고 여러 조건 하에서 TCS 문제를 풀어보고 그 성능에 대해 기존의 ACS 방법과 제안된 ACS 방법을 비교 평가해, 최적해에 더 빨리 수렴함을 실험을 통해 알 수 있었다.

A Hybrid Method Based on Genetic Algorithm and Ant Colony System for Traffic Routing Optimization

  • Thi-Hau Nguyen;Ha-Nam Nguyen;Dang-Nhac Lu;Duc-Nhan Nguyen
    • International Journal of Computer Science & Network Security
    • /
    • 제23권8호
    • /
    • pp.85-90
    • /
    • 2023
  • The Ant Colony System (ACS) is a variant of Ant colony optimization algorithm which is well-known in Traveling Salesman Problem. This paper proposed a hybrid method based on genetic algorithm (GA) and ant colony system (ACS), called GACS, to solve traffic routing problem. In the GACS, we use genetic algorithm to optimize the ACS parameters that aims to attain the shortest trips and time through new functions to help the ants to update global and local pheromones. Our experiments are performed by the GACS framework which is developed from VANETsim with the ability of real map loading from open street map project, and updating traffic light in real-time. The obtained results show that our framework acquired higher performance than A-Star and classical ACS algorithms in terms of length of the best global tour and the time for trip.

배전 계통의 손실 최소화를 위한 개미 군집 알고리즘의 적용 (Application of Ant colony Algorithm for Loss Minimization in Distribution Systems)

  • 전영재;김재철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권4호
    • /
    • pp.188-196
    • /
    • 2001
  • This paper presents and efficient algorithm for the loss minimization by automatic sectionalizing switch operation in distribution systems. Ant colony algorithm is multi-agent system in which the behaviour of each single agent, called artificial ant, is inspired by the behaviour of real ants. Ant colony algorithm is suitable for combinatiorial optimization problem as network reconfiguration because it use the long term memory, called pheromone, and heuristic information with the property of the problem. The proposed methodology with some adoptions have been applied to improve the computation time and convergence property. Numerical examples demonstrate the validity and effectiveness of the proposed methodology using a KEPCO's distribution system.

  • PDF