• 제목/요약/키워드: ant colony technique

검색결과 17건 처리시간 0.019초

개미군락 최적화 알고리즘을 이용한 진동수 구속조건을 가진 트러스구조물의 크기최적화 (Truss Size Optimization with Frequency Constraints using ACO Algorithm)

  • 이상진;배정은
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.135-142
    • /
    • 2019
  • Ant colony optimization(ACO) technique is utilized in truss size optimization with frequency constraints. Total weight of truss to be minimized is considered as the objective function and multiple natural frequencies are adopted as constraints. The modified traveling salesman problem(TSP) is adopted and total length of the TSP tour is interpreted as the weight of the structure. The present ACO-based design optimization procedure uses discrete design variables and the penalty function is introduced to enforce design constraints during optimization process. Three numerical examples are carried out to verify the capability of ACO in truss optimization with frequency constraints. From numerical results, the present ACO is a very effective way of finding optimum design of truss structures in free vibration. Finally, we provide the present numerical results as future reference solutions.

Ant colony optimization for dynamic stability of laminated composite plates

  • Shafei, Erfan;Shirzad, Akbar
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.105-116
    • /
    • 2017
  • This paper presents the dynamic stability study of laminated composite plates with different force combinations and aspect ratios. Optimum non-diverging stacking is obtained for certain loading combination and aspect ratio. In addition, the stability force is maximized for a definite operating frequency. A dynamic version of the principle of virtual work for laminated composites is used to obtain force-frequency relation. Since dynamic stiffness governs the divergence or flutter, an efficient optimization method is necessary for the response functional and the relevant constraints. In this way, a model based on the ant colony optimization (ACO) algorithm is proposed to search for the proper stacking. The ACO algorithm is used since it treats with large number of dynamic stability parameters. Governing equations are formulated using classic laminate theory (CLT) and von-Karman plate technique. Load-frequency relations are explicitly obtained for fundamental and secondary flutter modes of simply supported composite plate with arbitrary aspect ratio, stacking and boundary load, which are used in optimization process. Obtained results are compared with the finite element method results for validity and accuracy convince. Results revealed that the optimum stacking with stable dynamic response and maximum critical load is in angle-ply mode with almost near-unidirectional fiber orientations for fundamental flutter mode. In addition, short plates behave better than long plates in combined axial-shear load case regarding stable oscillation. The interaction of uniaxial and shear forces intensifies the instability in long plates than short ones which needs low-angle layup orientations to provide required dynamic stiffness. However, a combination of angle-ply and cross-ply stacking with a near-square aspect ratio is appropriate for the composite plate regarding secondary flutter mode.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.

ANN을 이용한 절삭성능의 예측과 ACO를 이용한 훈련 (Prediction of Machining Performance using ANN and Training using ACO)

  • 오수철
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.125-132
    • /
    • 2017
  • Generally, in machining operations, the required machining performance can be obtained by properly combining several machining parameters properly. In this research, we construct a simulation model, which that predicts the relationship between the input variables and output variables in the turning operation. Input variables necessary for the turning operation include cutting speed, feed, and depth of cut. Surface roughness and electrical current consumption are used as the output variables. To construct the simulation model, an Artificial Neural Network (ANN) is employed. With theIn ANN, training is necessary to find appropriate weights, and the Ant Colony Optimization (ACO) technique is used as a training tool. EspeciallyIn particular, for the continuous domain, ACOR is adopted and athe related algorithm is developed. Finally, the effects of the algorithm on the results are identified and analyzsed.

개미집단 최적화에 의한 이동 에이전트의 경로 계획 (A Path Planning of Mobile Agents By Ant Colony Optimization)

  • 강진식
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.7-13
    • /
    • 2008
  • 이 논문은 이동 에이전트의 경로 계획 알고리듬을 제안한다. 이동 에이전트에 대한 경로 계획은 많은 연구가 수행되어왔지만 복잡한 주변 환경에 대한 경로 계획에서의 시-공간적 제약조건은 수학적으로 모델화하기 어려우며, 최적해를 구하기는 쉽지 않다. 이 논문에서 그래픽 기반의 최적 경로 계획 알고리듬을 제안한다. 작업 환경은 에이전트가 이동할 수 있는 자유영역과 장애물 등이 존재하는 이동 불가 영역으로 구분하고, 자유 이동 영역 내에서 최적 경로는 개미집단-최적화 알고리듬을 이용한 탐색으로부터 구한다.

A Metaheuristic Approach Towards Enhancement of Network Lifetime in Wireless Sensor Networks

  • J. Samuel Manoharan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1276-1295
    • /
    • 2023
  • Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.

Xen에서 메모리 이용률 향상을 위한 동적 할당 기법 (A Dynamic Allocation Scheme for Improving Memory Utilization in Xen)

  • 이권용;박성용
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제37권3호
    • /
    • pp.147-160
    • /
    • 2010
  • 최근 서버의 통합을 통해 시스템 자원의 효율적인 활용을 제공할 수 있는 시스템 가상화가 많은 주목을 받고 있다. 이 시스템 가상화 기술을 통하여 보다 효과적으로 시스템 자원을 활용하고 가상화 소프트웨어의 성능을 향상시킬 수 있는 방안이 다양하게 연구되고 있다. 이러한 연구들은 CPU 측면에서 동적으로 가상머신에 할당된 양을 조절하거나 마이그레이션 기능을 활용하여 머신 간 자원 관리 등의 다양한 측면에서 활발하게 진행되고 있으나 메모리 측면에서는 그 연구가 매우 부족한 실정이다. 따라서 서버 통합에서의 메모리 자원의 이용은 가상머신 탑재 시에 정적으로 할당된 메모리를 사용하는 수준에서 머물고 있다. 하지만 본 논문의 성능 비교 환경인 Xen 가상화에서 가상머신에 정적으로 메모리를 할당하는 방식은 유휴메모리를 다량 발생시켜 메모리 이용률을 낮추게 된다. 메모리 이용률을 높이기 위하여 가상머신에 할당하는 메모리양을 줄일 경우 다른 시스템 자원에도 영향을 미치게 되며 가상머신에서 운영되는 서비스의 성능 저하를 유발하게 된다. 본 논문에서는 가상머신 사이의 메모리 할당량을 조절하여 가상머신의 서비스에 성능저하가 없으면서 이용률을 향상시킬 수 있는 메모리의 동적 할당을 제안한다. 메모리 사용량 예측을 위한 AR 모델과 메모리 이용률 최적화를 위한 개미 군집 알고리즘을 사용하여 구현한 메모리의 동적 할당 시스템을 통하여 정적 할당의 경우에 비하여 더 많은 수의 가상머신을 운영할 수 있게 되고 서버로 운영되는 가상머신의 서비스 성능 저하 없이 약 1.4배의 이용률 향상을 얻을 수 있었다.