• Title/Summary/Keyword: ansys

Search Result 2,190, Processing Time 0.03 seconds

Stiffness evaluation of elastomeric bearings for leg mating unit (LMU용 일래스토머릭 베어링의 강성평가)

  • Han, Dong-Seop;Jang, Si-Hwan;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.106-111
    • /
    • 2017
  • In this study, the stiffness of an LMU (Leg Mating Unit), which is a device required for installing the top side part of an offshore structure, was examined through structural analysis. This unit is mounted on the supporting point of the structure and is used to absorb the shock at installation. It is a cylindrical structure with an empty center. To support the vertical load, elastomeric bearings (EBs) and iron plates are laminated in layers. The stiffness of the EBs is basically influenced by the size of the bearings, but it varies with the number of laminated sheets inside the same sized structure. The relationship between the stiffener and the compressive stiffness is investigated, and its design is suggested. The stiffness of the EBs is analyzed by calculating the reaction force, while controlling the displacement. First, the relationship between the size of the reinforcing plate and the compressive stiffness is considered. Next, the relationship between the number of stacked reinforcing plates and the compression stiffness is considered. Different loads are required for each installed point. The goal is to design the compression stiffness in such a way that the same deformation occurs at each point in the analysis. In this study, ANSYS is used to perform the FE analysis.

Structural Analysis of Built-in Side-by-Side Refrigerator with Ice Dispenser and Home Bar and Evaluation of Door Differences and Gasket Gap (얼음디스펜서와 홈바가 있는 빌트인 양문형 냉장고의 구조해석 및 도어 단차와 개스킷 간극의 평가)

  • Ryu, Si-Ung;Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.465-473
    • /
    • 2018
  • A cabinet-door integrated finite element model for a built-in side-by-side refrigerator with an ice dispenser and home bar was constructed, and its deformation was analyzed by ANSYS. As loads, the food load in the shelf and baskets, and thermal load occurring during the normal operation condition were considered. From results of the analyses, the door height difference (DHD) and door flatness difference (DFD) between the two doors, and the increase in the gap of the door gasket, which affects the sealing of cool air in the cabinet, were derived. As results of an evaluation of the differences, the DHD and DFD under the assembled condition satisfied the acceptance criteria of the manufacturer. The food and thermal loads increased the DHD and DFD due to thermal deformation, and the DFD increased significantly. In addition, the increase in the gap of door gasket located between the cabinet and doors was derived from the results of displacements under the food and thermal loads. The evaluation showed that the maximum increase in gap appeared at the left edge of the freezing compartment gasket, which satisfied the acceptance criteria of the manufacturer.

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF

Analysis of Temperature Characteristics on Accelerometer using SOI Structure (SOI 구조 가속도센서의 온도 특성 해석)

  • Son, Mi-Jung;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • One of today's very critical and sensitive accurate accelerometer which can be used higher temperature than $200^{\circ}C$ and corrosive environment, is particularly demanded for automotive engine. Because silicon is a material of large temperature dependent coefficient, and the piezoresistors are isolated with p-n junctions, and its leakage current increase with temperature, the performance of the silicon accelerometer degrades especially after $150^{\circ}C$. In this paper, The temperature characteristic of a accelerometer using silicon on insulator (SOI) structure is studied theoretically, and compared with experimental results. The temperature coefficients of sensitivity and offset voltage (TCS and TCO) are related to some factors such as thermal residual stress, and are expressed numerically. Thermal stress analysis of the accelerometer has also been carried out with the finite-element method(FEM) simulation program ANSYS. TCS of this accelerometer can be reduced to control the impurity concentration of piezoresistors, and TCO is related to factors such as process variation and thermal residual stress on the piezoresistors. In real packaging, The avarage thermal residual stress in the center support structure was estimated at around $3.7{\times}10^4Nm^{-2}^{\circ}C^{-1}$ at sensing resistor. The simulated ${\gamma}_{pT}$ of the center support structure was smaller than one-tenth as compared with that of the surrounding support structure.

  • PDF

EFFECT OF RESTORATION TYPE ON THE STRESS DISTRIBUTION OF ENDODONTICALLY TREATED MAXILLARY PREMOLARS; THREE-DIMENSIONAL FINITE ELEMENT STUDY (수복물의 종류가 근관치료된 상악 제2소구치의 응력분포에 미치는 영향: 3차원 유한요소법적 연구)

  • Jung, Heun-Sook;Kim, Hyeon-Cheol;Hur, Bock;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.8-19
    • /
    • 2009
  • The purpose of this study was to investigate the effects of four restorative materials under various occlusal loading conditions on the stress distribution at the CEJ of buccal. palatal surface and central groove of occlusal surface of endodontically treated maxillary second premolar, using a 3D finte element analysis. A 3D finite element model of human maxillary second premolar was endodontically treated. After endodontic treatment, access cavity was filled with Amalgam, resin, ceramic or gold of different mechanical properties. A static 500N forces were applied at the buccal (Load-1) and palatal cusp (Load-2) and a static 170N forces were applied at the mesial marginal ridge and palatal cusp simultaneously as centric occlusion (Load-3). Under 3-type Loading condition, the value of tensile stress was analyzed after 4-type restoration at the CEJ of buccal and palatal surface and central groove of occlusal surface Excessive high tensile stresses were observed along the palatal CEJ in Load-1 case and buccal CEJ in Load-2 in all of the restorations. There was no difference in magnitude of stress in relation to the type of restorations. Heavy tensile stress concentrations were observed around the loading point and along the central groove of occlusal surface in all of the restorations. There was slight difference in magnitude of stress between different types of restorations. High tensile stress concentrations around the loading points were observed and there was no difference in magnitude of stress between different types of restorations in Load-3.

Geometry Design of a Pitch Controlling Type Horizontal Axis Turbine and Comparison of Power Coefficients (피치각 제어형 수평축 조류 터빈의 형상설계 및 출력계수 비교)

  • Park, Hoon Cheol;Truong, Quang-Tri;Phan, Le-Quang;Ko, Jin Hwan;Lee, Kwang-Soo;Le, Tuyen Quang;Kang, Taesam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.167-173
    • /
    • 2014
  • In this work, based on the blade element-momentum theory (BEMT), we proposed the geometry of a lab-scale horizontal axis tidal turbine with a diameter of 80cm, which can demonstrate the maximum power coefficient, and investigated the effect of blade pitch angle increase on the power coefficient. For validation of the computed power coefficients by the BEMT, we also computed the power coefficient using the computational fluid dynamics (CFD) for each case. For the CFD, 15 times of the turbine radius was used for the length and diameter of the computational domain, and the open boundary condition was prescribed at the boundary of the computational domain. The maximum power coefficients of the turbine acquired by the BEMT and CFD were about 48%, showing a good agreement. Both of the power coefficients computed by the BEMT and CFD tended to decrease when the blade pitch angle increases. The two power coefficients for a given tip-speed ratio were in good agreement. Through the present study, we have confirmed that we can trust the proposed geometry and the computed power coefficients based on the BEMT.

THE EFFECT OF RESTORATIVE MATERIALS ON THE STRESS DISTRIBUTION OF CLASS V COMPOSITE RESIN RESTORATIONS - A 3D FINITE ELEMENT INVESTIGATION (수복재료가 5급 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원유한요소법적 연구)

  • Ahn, Hyoung-Ryoul;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.1
    • /
    • pp.20-29
    • /
    • 2006
  • The purpose of this study was to analyze the stress distribution aspect of unrestored and restored combined shape (wedge shape occulusally and saucer shape gingivally) class V cavity, which found frequently in clinical cases. A maxillary second permolar restored with a combined shape class V composite restorations were modeled using the three dimensional finite element method. Static occlusal load of 170 N was applied on lingual incline of buccal cusp at the angle of $45^{\circ}$ with the longitudinal axis of the tooth. And three dimensional finite element analysis was taken by ANSYS (Version 6.0, Swanson Analysis System Co., Houston, U.S.A) program which represent the stress distribution on unrestored and restored cavity wall and margin. The conclusions were as follows. 1. Compared to the unrestored cavity, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced and in restored cavity. 2. Von Mises stress at the occlusal and cervical cavity margin and wall were increased in restored cavity in comparison with the unrestored cavity. 3. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the cementoenamel junction and line angle of the cavity base were reduced more than in the flowable restoration. 4. In the hybrid and hybrid/flowable composite resin restoration, Von Mises stress at the occlusal and cervical cavity margin and wall were increased more than in the flowable restoration.

Effects of occlusal load on the stress distribution of four cavity configurations of noncarious cervical lesions: A three-dimensional finite element analysis study (네 가지 형태의 비우식성 치경부 병소의 3차원 유한요소법적 응력분석)

  • Jeon, Sang-Je;Park, Jeong-Kil;Kim, Hyeon-Cheol;Woo, Sung-Gwan;Kim, Kwang-Hoon;Son, Kwon;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.359-370
    • /
    • 2006
  • The objective of this study was to investigate the effect of excessive occlusal loading on stress distribution on four type of cervical lesion, using a three dimensional finite element analysis (3D FEA). The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. Four different lesion configurations representative of the various types observed clinically for teeth were studied. A static point load of 500N was applied to the buccal and lingual cusp (Load A and B). The principal stresses in lesion apex, and vertical sectioned margin of cervical wall were analyzed. The results were as follows 1. The patterns of stress distribution were similar but the magnitude was different in four types of lesion 2. The peak stress was observed at mesial corner and also stresses concentrated at lesion apex. 3. The compressive stress under load A and the tensile stress under load B were dominant stress. 4. Under the load, lesion can be increased and harmful to tooth structure unless restored.

FINITE ELEMENT ANALYSIS OF WIDE DIAMETER SCREW IMPLANT PLACED INTO REGENERATED BONE (재생된 골에 식립한 넓은 직경의 나사형 임플란트에 대한 유한요소법적 분석)

  • Kim, Su-Gwan;Kim, Jae-Duk;Kim, Chong-Kwan;Kim, Byung-Ock
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.3
    • /
    • pp.248-254
    • /
    • 2005
  • The purpose of this study was to investigate the distribution of stress within the regenerated bone surrounding the implant using three dimensional finite element stress analysis method. Using ANSYS software revision 6.0 (IronCAD LLC, USA), a program was written to generate a model simulating a cylindrical block section of the mandible 20 mm in height and 10 mm in diameter. The $5.0{\times}11.5-mm$ screw implant (3i, USA) was used for this study, and was assumed to be 100% osseointegrated. And it was restored with gold crown with resin filling at the central fossa area. The implant was surrounded by the regenerated type IV bone, with 4 mm in width and 7 mm apical to the platform of implant in length. And the regenerated bone was surrounded by type I, type II, and type III bone, respectively. The present study used a fine grid model incorporating elements between 250,820 and 352,494 and nodal points between 47,978 and 67,471. A load of 200N was applied at the 3 points on occlusal surfaces of the restoration, the central fossa, outside point of the central fossa with resin filling into screw hole, and the functional cusp, at a 0 degree angle to the vertical axis of the implant, respectively. The results were as follows: 1. The stress distribution in the regenerated bone-implant interface was highly dependent on both the density of the native bone surrounding the regenerated bone and the loading point. 2. A load of 200N at the buccal cusp produced 5-fold increase in the stress concentration at the neck of the implant and apex of regenerated bone irrespective of surrounding bone density compared to a load of 200N at the central fossa. 3. It was found that stress was more homogeneously distributed along the side of implant when the implant was surrounded by both regenerated bone and native type III bone. In summary, these data indicate that concentration of stress on the implant-regenerated bone interface depends on both the native bone quality surrounding the regenerated bone adjacent to implant and the load direction applied on the prosthesis.