• Title/Summary/Keyword: anoxic condition

Search Result 130, Processing Time 0.022 seconds

Effect of By-Product Gypsum Fertilizer on Methane Gas Emissions and Rice Productivity in Paddy Field

  • Park, Jun-Hong;Sonn, Yeon-Kyu;Kong, Myung-Suk;Zhang, Yong-Seon;Park, Sang-Jo;Won, Jong-Gun;Lee, Suk-Hee;Seo, Dong-Hwan;Park, So-Deuk;Kim, Jang-Eok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Rice cultivation in paddy field affects the global balance of methane ($CH_4$) as a key greenhouse gas. To evaluate a potential use of by-product gypsum fertilizer (BGF) in reducing $CH_4$ emission from paddy soil, $CH_4$ fluxes from a paddy soil applied with BGF different levels (0, 2, 4 and $8Mg\;ha^{-1}$) were investigated by closed-chamber method during rice cultivation period. $CH_4$ flux significantly decreased (p<0.05) with increasing level of BGF application. $8Mg\;ha^{-1}$ of BGF addition in soil reduced $CH_4$ flux by 60.6% compared to control. Decreased soil redox potential (Eh) resulted in increasing $CH_4$ emission through a $CO_2$ reduction reaction. The concentrations of dissolved calcium (Ca) and sulfate ion (${SO_4}^{2-}$) in soil pore water were significantly increased as the application rate of BGF increased and showed negatively correlations with $CH_4$ flux. Decreased $CH_4$ flux with BGF application implied that ${SO_4}^{2-}$ ion led to decreases in electron availability for methanogen and precipitation reaction of Ca ion with inorganic carbon including carbonate and bicarbonate as a source of $CH_4$ formation under anoxic condition. BGF application also increased rice grain yield by 16% at $8Mg\;ha^{-1}$ of BGF addition. Therefore, our results suggest that BGF application can be a good soil management practice to reduce $CH_4$ emission from paddy soil and to increase rice yield.

Enhanced total phosphorus removal using a novel membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation (유입흐름 변경 및 전응집 기반 이단응집 제어 적용 MBR을 통한 총인처리 개선 연구)

  • Cha, Jaehwan;Shin, Kyung-Suk;Park, Seung-Kook;Shin, Jung-Hun;Kim, Byung-Goon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.103-114
    • /
    • 2017
  • A membrane bioreactor by sequentially alternating the inflow and by applying a two-stage coagulation control based on pre-coagulation was evaluated in terms of phosphorus removal efficiency and cost-savings. The MBR consisted of two identical alternative reaction tanks, followed by aerobic, anoxic and membrane tanks, where the wastewater and the internal return sludge alternatively flowed into each alternative reaction tank at every 2 hours. In the batch-operated alternative reaction tank, the initial concentration of nitrate rapidly decreased from 2.3 to 0.4 mg/L for only 20 minutes after stopping the inflow, followed by substantial release of phosphorus up to 4 mg/L under anaerobic condition. Jar test showed that the minimum alum doses to reduce the initial $PO_4$-P below 0.2 mg/L were 2 and 9 mol-Al/mol-P in the wastewater and the activated sludge from the membrane tank, respectively. It implies that a pre-coagulation in influent is more cost-efficient for phosphorus removal than the coagulation in the bioreactor. On the result of NUR test, there were little difference in terms of denitrification rate and contents of readily biodegradable COD between raw wastewater and pre-coagulated wastewater. When adding alum into the aerobic tank, alum doses above 26 mg/L as $Al_2O_3$ caused inhibitory effects on ammonia oxidation. Using the two-stage coagulation control based on pre-coagulation, the P concentration in the MBR effluent was kept below 0.2 mg/L with the alum of 2.7 mg/L as $Al_2O_3$, which was much lower than 5.1~7.4 mg/L as $Al_2O_3$ required for typical wastewater treatment plants. During the long-term operation of MBR, there was no change of the TMP increase rate before and after alum addition.

A Study on Adjustment of Operational Factor in A2O process (A2O공정 운전인자 조정에 대한 연구)

  • Yoo, Ho-Sik;Lee, Byonghi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.33-41
    • /
    • 2015
  • An alternative was investigated to maximize the treatment efficiency of wastewater treatment plant without large scale expansion. 79% of detention time was required for enough nitrogen control. As aeration time was extended, nitrification was processed, but opposite trend was seen in phosphorus. High concentration of $NO_3-N$ interrupted PAOs activity not to absorb phosphorus. An alternative was devised for selective use of anaerobic or anoxic zone. Trisection was suggested for alternative use of center room. The result was relatively successful. The concentration of phosphorus was reduced with reduction of nitrogen. Extended anaerobic condition seemed to stimulate denitrification. Valve connection of internal return from aeration tank will make it possible to use middle room alternatively. This method will be a good alternative for seasonal variation of water temperature.

A study on enhancement of nitrogen removal efficiency on low concentration influent sewage (단계유입과 내부순환을 이용한 저농도 하수의 질소처리효율 향상을 위한 연구)

  • Choo, Tai-Ho;Kim, Tae-Ki;Ok, Chi-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.675-680
    • /
    • 2010
  • This study was investigated to complement nitrogen removal of low concentration influent municipal sewage. The following are the results of the effect of Internal Recircularion and Step Feed rates on Treatment efficiency at a BOD low concentration influent municipal sewage. Up to 90.0% of BOD, 87.8% of COD, 71.0% of T-N, 75.3% of T-P were removed on average at a low concentration influent. Whereas BOD and T-P were removed without any relations to Step Feed rates, T-N was influenced. Nitrogen removal efficiencies in 80% of Step Feed rates was 65%, which was caused by the lack of Carbon Source for denitrification. Nitrogen removal efficiency in 40% of Step Feed rates was 58%, which means it was not removed but dischared. Consequently, the efficiency was 73%, 80%, and 78% in 70%, 60% and 50% of Step Feed rates, which was concluded as the best range of Step Feed rates. Nitrogen removal efficiency increased under the condition of Internal Recircularion. At over 150% of Internal Recircularion rate, the efficiencies were not affected any more. It is believed that lots of Recircularion caused inflow of DO to anoxic tank. Therefore, the most appropriate Internal Recircularion rate can be concluded as 50~150%.

Determination of Major Reduced Sulfur Gases Emitted from Wastes Stored in Environmental Facility Using GC/FPD (GC/FPD를 이용한 환경기초시설 폐기물의 대기중 황계열 악취물질 배출특성에 관한 연구)

  • Lee, Taeyoon;Lee, Jeakeun;Lee, Junki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.2
    • /
    • pp.37-43
    • /
    • 2009
  • With the economic development of Korea, sewage treatment facilities and waste food treatment facilities have been steadily increased. These facilities have positive effects such as the conservation of the water resources quality and waste food recycling while they also affect the neighborhood life with severe odor problems. Therefore, it was first collected sludge samples from 5 sewage treatment facilities and 5 waste food treatment facilities where the amounts of waste produced from above sites are relatively immense in Busan and estimate the $H_2S$ emission rates. Then it was selected 1 sample which has the highest emission rate of $H_2S$. Using flux chamber and GC/FPD analyses, it was tried to quantify the emitted amount of sulfonic gas concentration under anoxic condition. The sludge sample obtained from Noksan sewage treatment facility has the highest emission rate of $H_2S$. This sample contained 156.18 mg/kg $H_2S$. The odor compounds were analyzed using GC/FPD and the concentrations were converted to odor quotient. Among odor compounds the ratio of $CH_3SH$ (methylmercaptan) for the total odor quotient was 47.3% and considered to be the main odor compound in the sample.

  • PDF

Paleoenvironments in Western Part of the East Sea, Korea, during the Late Quaternary Using Benthic Foraminifera (저서성 유공충에 의한 한국 동해 서부 해역의 제 4기 후반 고해양환경 연구)

  • 우한준;정혜경
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.493-511
    • /
    • 1995
  • Analysis of the Late Quaternary benthic foraminifera in the cores from the western part of the East Sea, Korea, indicates several distinct changes in the paleoenvironments during the deposition. The palecology of biofacies of Cores PC-1 from the upper slop and PC-2 from the rise shows several distinct changes in bottom water temperatures during the late Quaternary. The Core PC-4 from the Ulleung Basin generally consists of agglutinated genus, Muiliammina, and anaerobic calcareous genus, Bolivina, in biofacies, suggesting that the anoxic bottom condition was prevailed during the deposition. Benthic foraminiferal rare or barren zones in the Cores indicate the limits of water circulation caused by lower sea-level in the regions during the glacial period through the Late Quaternary. The changes of benthic foraminiferal biofacies reflect temporal and spacial variations in overall bottom environments, such as bottom water temperature, dissolved oxygen, and water circulation pattern. The benthic foraminiferal data can be used to interpret paleoclimatic conditions and predict global sea-level changes, and the results of these studies should be useful to understand the evolutional history of the East Sea through the Late Quaternary.

  • PDF

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

Biological Phosphorus Release and Uptake on Nitrate Loadings in Anoxic Condition of SBR process (SBR 공정의 무산소조건에서 질산염농도에 따른 생물학적 인의 방출 및 흡수 특성)

  • Lee, Hee-Ja;Kim, Kwang-Soo;Cho, Yang-Seok;Kim, I-Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1164-1168
    • /
    • 2007
  • 질소 및 인 동시제거 공정 중 대표적인 연속회분식반응조(Sequencing Batch reactor: SBR)는 비교적 간편한 운전방법과 저렴한 건설비, 유입수의 부하변동에 큰 영향을 받지 않는 소규모 하수처리에 적합한 공정으로 알려져 있다. 또한 SBR 공정은 기존 활성슬러지 공법에 비해 적은 부지로 많은 양의 폐수를 처리할 수 있고 유입수 수질 및 유량변동에 따라 다양한 운전주기를 변화할 수 있으며, 유기물 제거뿐만 아니라 반응조의 변형에 의해 영양염류의 제거가 가능한 장점이 있다. 본 연구에서는 bench scale SBR 실험을 통하여 질산염의 탈질속도 및 용해성 인의 흡수와 방출속도를 측정하고, SBR 공정의 무산소조건에서 인흡수 및 탈질을 동시에 수행하는 DPB 존재의 가능성을 파악하고자 하였다. 연구결과 무산소조건에서 S-P의 방출과 흡수가 동시에 진행되었으며, 무산소조건에서 S-P의 방출속도는 $0.08{\sim}0.94\;kgS-P/kgMLSS{\cdot}d$, 흡수속도는 $0.012{\sim}0.1\;kgS-P/kgMLSS{\cdot}d$를 나타내었다. 무산소조에서 S-P의 방출 및 흡수가 진행되는 동안 탈질과정도 함께 진행되었으며, 각각의 F/M비에서 탈질속도를 측정한 결과 F/M비 $0.44\;kgCOD/kgMLSS{\cdot}d$에서는 최대 $0.16\;kgNO_3^-N/kgMLSS{\cdot}d$의 탈질속도를 나타내었다. S-P이 방출되지 않는 경우와 방출되는 경우의 비탈질속도를 비교한 결과 S-P이 방출되지 않는 경우의 비탈질속도가 S-P이 방출되는 경우의 비탈질속도보다 높았다. 이렇게 S-P이 방출되는 경우의 비탈질속도가 더 낮은 이유는 무산소 조건에서 탈질과 S-P의 방출 및 흡수가 동시에 일어나는 경우 S-P의 방출에 관여하는 미생물과 탈질에 관여하는 미생물간의 경쟁반응 때문으로 판단된다.응답법의 적용이 가능함을 보였고, 이는 보다 복잡한 관망에서의 천이류 해석이 가능함을 시사한다.$경상도지리지$\lrcorner$(慶尙道地理志)에는 상주가 8곳으로 1/3의 자기 생산을 담당하고 있었다. $\ulcorner$경상도지리지$\lrcorner$(慶尙道地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와 동년대에 동일한 목적으로 찬술되었음을 알 수 있다. $\ulcorner$경상도실록지리지$\lrcorner$(慶尙道實錄地理志)에는 $\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$\lrcorner$(東國與地勝覽) 에서는 자기소와 도기소의 위치가 완전히 삭제되어 있다. 이러한 현상은 첫째, 15세기 중엽 경제적 태평과 함께 백자의 수요 생산이 증가하자 군신의 변별(辨別)과 사치를 이유로 강력하게 규제하여 백자의 확대와 발전에 걸림돌이 되었다. 둘째, 동기(銅器)의 대체품으로 자기를 만들어 충당해야할 강제성 당위성 상실로 인한 자기수요 감소를 초래하였을 것으로 사료된다. 셋째, 경기도 광주에서 백자관요가 운영되었으므로 지방인 상주지역에도 더 이상 백자를 조달받을 필요가 없이, 일반 지방관아와 서민들의 일상용기 생산으로 전락하여 소규모화 되었을 것이라고 사료된다.장 운동기능을 향상시키는 유효성분의 보강 등이 필요하다는 점도 알 수 있었다.더불어 산화물질 해독에 관여하는 다른 유전자

  • PDF

Characteristics in Organic Carbon Distribution in the Seamangeum Area During the Construction of Artificial Sea Dike, Korea (방조제 건설에 따른 새만금 표층 유기탄소 분포 특성)

  • Park, Jun-Kun;Kim, Eun-Soo;Kim, Kyung-Tae;Cho, Sung-Rok;Song, Tae-Yoon;Yoo, Jeong-Kyu;Kim, Seong-Soo;Park, Yong-Chul
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.75-83
    • /
    • 2009
  • In order to understand the impacts of the construction of artificial sea dikes on carbon cycle in Samangeum area being a closed environment after April, 2006, we had measured suspended particulate matters, particulate and dissolved organic carbon in the surface water of inner Saemangeum dike from 2003 to 2006. The significant inputs of suspended particulate matter and organic carbon were mainly occurred during the wet season which suggests that most organic matter loading is concentrated within a short period of time inside the dike. The concentrations of particulate matter and organic carbon have gradually increasing every year inside of dike from the Mangyeong river estuary to Saemangeum dike, which has been closed since 2003 after the construction of the 4th dike. The particulate organic carbon increased due to the phytoplankton blooms by eutrophication. If the large portion of particulate organic matter produced in the surface water sink to the bottom sediment, this will cause the anoxic condition in this closed environment.

  • PDF

Water Quality Improvement Using a Contact Oxidation Canal with Sedimentation Basin (침전접촉산화수로를 이용한 수질 개선)

  • Kim, Won-Jang;Park, Sang-Hyun;Kim, Hyung-Joong;Kim, Tae-Kyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.3
    • /
    • pp.143-149
    • /
    • 2001
  • A contact oxidation canal system with sedimentation basin was installed to study the efficiency of water quality purification. The primary sedimentation basin with 60 min of HRT (Hydraulic Retention Time) included in the system was aimed to sediment pollutants in the water and the deposit being released by the drainage culvert located at the bottom of the system. The oxidation canal aerated by nozzle was to contact the pollutants and oxygen in the surface of plastic filter to purify the water. Discharge, HRT, length of the oxidation canal were $200\;m^3/day$, 90 min, 20 m, respectively. The treatment efficiency of total nitrogen was lower compared with other water quality items such as SS, BOD, TP because the anoxic condition for denitrification was not ensured after the oxidation canal. However, $25%{\sim}89.6%$ of SS, $75.0%{\sim}91.5%$ of BOD, $44.3%{\sim}95.3%$ of TP were removed in this system. Overall, the results indicates that this system appears to have a potential capability for water quality improvement of the reservoirs or the canals in the agricultural watershed.

  • PDF