• Title/Summary/Keyword: anoxic condition

Search Result 130, Processing Time 0.026 seconds

Characterizations of Denitrifying Polyphosphate-accumulating Bacterium Paracoccus sp. Strain YKP-9

  • Lee, Han-Woong;Park, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1958-1965
    • /
    • 2008
  • A denitrifying polyphosphate-accumulating bacterium (YKP-9) was isolated from activated sludge of a 5-stage biological nutrient removal process with step feed system. This organism was a Gram-negative, coccus-shaped, facultative aerobic chemoorganotroph. It had a respiratory type of metabolism with oxygen, nitrate, and nitrite as terminal electron acceptors. The 16S rRNA gene sequence of strain YKP-9 was most similar to the 16S rRNA gene sequence of Paracoccus sp. OL18 (AY312056) (similarity level, 97%). Denitrifying polyphosphate accumulation by strain YKP-9 was examined under anaerobic-anoxic and anaerobic-oxic batch conditions. It was able to use external carbon sources for polyhydroxyalkanoates(PHA) synthesis and to release phosphate under anaerobic condition. It accumulated polyphosphate and grew a little on energy provided by external carbon sources under anoxic condition, but did neither accumulate polyphosphate nor grow in the absence of external carbon sources under anoxic condition. Cells with intracellular PHA cannot accumulate polyphosphate in the absence of external carbon sources under anoxic condition. Under oxic condition, it grew but could not accumulate polyphosphate with external carbon sources. Based on the results from this study, strain YKP-9 is a new-type denitrifying polyphosphate-accumulating bacterium that accumulates polyphosphate only under anoxic condition, with nitrate and nitrite as the electron acceptors in the presence of external carbon sources.

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.

Biological Nitrogen and Phosphorus Removal Characteristics on Organic Material and Nitrate Loadings in SBR Process (연속회분식반응조에서 유기물 부하와 질산염농도에 따른 생물학적 질소 및 인 제거 특성)

  • Kim, I-Tae;Lee, Hee-Ja;Kim, Kwang-Soo;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.571-576
    • /
    • 2004
  • Since anaerobic/anoxic/oxic process, which is a typical mainstream biological nitrogen and phosphorus removal process, utilizes influent organic matter as an external carbon source for phosphorus release in anaerobic or anoxic stage, influent COD/T-P ratio gives a strong influence on performance of phosphorus removal process. In this study, a bench scale experiment was carried out for SBR process to investigate nitrogen and phosphorus removal at various influent COD/T-P ratio and nitrate loadings of 23~73 and 1.6~14.3g $NO_3{^-}-N/kg$ MLSS, respectively. The phosphorus release and excess uptake in anoxic condition were very active at influent COD/T-P ratios of 44 and 73. However, its release and uptake was not obviously observed at COD/T-P ratio of 23. Consequently, phosphorus removal efficiency was decreased. In addition, the phosphorus release and uptake rate in anoxic condition increased as the nitrate loading decreased. Specific denitrification rate had significantly high correlation with organic materials and nitrate loadings of the anoxic phase too. The rate of phosphorus release and uptake in the anoxic condition were $0.08{\sim}0.94kg\;S-P/kg\;MLSS{\cdot}d$ and $0.012{\sim}0.1kg\;S-P/kg\;MLSS{\cdot}d$, respectively.

Characteristics of Aerobic Granular Activated Sludge According to Electron Acceptors in Sequencing Batch Reactor Process (SBR공정에서 전자수용체에 따른 호기성 입상활성슬러지의 공정별 특성)

  • Kim, I-Tae;Lee, Hee-Ja;Bae, Woo-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.480-487
    • /
    • 2004
  • This study was conducted to find the effect of electron acceptors on the formation of granular sludge by using four different types of electron acceptors. The phosphorous uptake, denitrification, and sulfate reduction in anoxic modes were simultaneously occured because of the presence of the polyphosphate accumultating organism(PAO) that utilize nitrate and sulfate as an electron acceptor in the anoxic zone. Denitrirying phosphorous removal bacteria(DPB) was enriched under anaerobic/anoxic/aerobic condition with a nitrate as an electron acceptor, and desulfating phosphorous removal bacteria(DSPB) was enriched under anaerobic/anoxic/aerobic condition with a sulfate as an electron acceptor. Polyphosphate accumulating organism(PAO) were enriched in the anaerobic/aerobic SBR. PAO took up acetate faster than DPB and DSPB during the aerobic phase. The sludge with nitrate and sulfate as an electron acceptors grew as a granules which possessed high activity and good settleability. In the anaerobic/aerobic modes, typical floccular growth was observed. In the result of bench-scale experiment, simultaneous reactions of phosphorus uptake, denitrification and sulfate reduction were observed under anoxic condition with nitrate and sulfate as an electron acceptors. These results demonstrated that the anaerobic/anoxic modes with nitrate and sulfate as an electron acceptors played an important role in the formation of the sludge granulation.

A Study on the Removal of Nitrogen and Phosphorus Depending on Existence of Cilia Media in Sewage in Anaerobic-Anoxic-Oxic Process ($A_2O$공정에서의 섬모상 담체 사용 유무에 따른 하수의 질소 . 인 제거에 관한 연구)

  • 박태진;이정민;송경석;조일형;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.3
    • /
    • pp.69-75
    • /
    • 2000
  • This study was carried out to investigate the removal of nitrogen and phosphorus in municipal sewage according to the variation of volumetric ratio in the reactor. It also was performed to provide basic data necessary to the development and improvement of the process which is Anaerobic-Anoxic-Oxic(A2O). In the removal of BOD and COD, the best efficiency of the process showed in the condition of using the media, 1Q of internal recycle rate and 1:3:2 of the volumetric ratio in Anaerobic-Anoxic-Oxic process. In most cases, nitrogen and phosphorus removal efficiency of the process using the cilia media was superior to that of the process which didn't use the media. In the removal of T-N and T-P, the best efficiency of the process showed in the condition of using the media, 1Q of internal recycle rate and 1:3:2 of the volumetric ratio in Anaerobic-Anoxic-Oxic process.

  • PDF

Biological nitrogen removal of ammonium-rich industrial wastewater by suspended bacterial growth

  • Im, Jun-Taek;Seong, Se-Hyeon;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.399-402
    • /
    • 2002
  • Industrial wastewater with high ammonium concentration was treated in batch biological systems which was a modified Ludzack- Ettinger process. Up to 78% conversion of $NH_4\;^+-N$ to $NO_x\;^--N$ was achieved in batch culture condition. Under anoxic condition with methanol as the carbon source, the denitrifiers decreased $NO_x\;^--N$ concentration from 608 mg/L to 5.6 mg/L in 22 d. As well as anoxic denitrification of $NO_x\;^-$ to $N_2$, dissimilatory nitrate reduction to ammonium also occurred under the condition as respiratory denitrification.

  • PDF

Characteristics of Nutrient Removal with Variation of the Anoxic-Oxic Phase Repetition in Sequencing Batch Reactor Process (SBR공정의 무산소-호기 구간반복에 따른 영양염류 제거 특성)

  • Lee, Jaekune;Yim, Soobin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • This study was performed to investigate the characteristics of nutrient removal by Sequencing Batch Reactor (SBR) system, which could achieve high removal efficiencies of nitrogen and phosphorus and make it possible convenient management and operation. In this study, dissolved oxygen (DO), chemical oxygen demand (COD), nitrogen, and phosphorus in SBR system were examined by variation of anoxic-oxic phase repetition in order to optimize an operational method. The 1~4 times of anoxic-oxic phases (Run 1~4) were repeated during 1 cycle operation period. As the repetition frequency increased, it was more difficult to maintain DO condition enough for denitrification. The SBR system showed high COD removal efficiency more than 91% regardless of operational condition. About 68% of nitrogen removal rate was obtained in conditions of 2 or 3 times repetition of anoxic phases, in which NOx-N among discharged total nitrogen account for more than 99%. Approximately 40% of phosphorus was eliminated in the conditions of 1~3 times of anoxic phase repetition.

  • PDF

Characteristics of Denitrification from Municipal Wastewater Treatment using a Combined Fixed Film Reactor (CFFR) Process (복합생물막 반응기를 이용한 하수처리시 탈질화 특성)

  • 이종현;남해욱;김영규;박태주
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.107-113
    • /
    • 1999
  • A new biological nutrient removal system combining $A^2/O$ process with fixed film was developed in this work and the characteristics of denitrification were especially investigated in the combined fixed film reactor(CFFR). Media was added in the anaerobic, anoxic and aerobic reactors, respectively. Tests were made to establish the effluent level of $NO_x-N$, COD, DO and nitrite effects on $NO_x-N$ removal in the CFFR by decreasing hydraulic retention time (HRT) from 10.0 to 3.5 hours and by increasing internal recycle ratio form 0% to 200%. The influent was synthesized to levels similar to the average influent of municipal wastewater treatment plants in Korea. SARAN media with a porosity of 96.3% was packed 40% / 130% / 25% based on its reactor volume, respectively. It was found that COD rarely limited dentrification in the anoxic reactor because of high $C/NO_x/-N$ ratio in the anoxic reactor, while DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent inhibited denitrification in the anoxic reactor. It was proved that the critical points of DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent were 0.15mg/L and 10%, respectively. As the internal recycle ratio increased, DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent increased. Especially, at the condition of internal recycle ratio, 200%, DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent exceeded the critical points of 0.15mg/L and 10%, respectively. Then, denitrification efficiency considerably decreased. Consequently, it was represented that the control of DO concentration in the anoxic reactor and $NO_2-N/NO_x/-N$ from the aerobic effluent can assure effective denitrification.

  • PDF

Characteristics of Advanced Wastewater Treatment Process Using High MLSS in Anoxic Tank (무산소조에서 고농도 미생물을 이용한 하수고도처리공정의 처리특성)

  • Son, Dong-Hun;Lim, Bong-Su;Park, Hye-Sook
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.42-47
    • /
    • 2004
  • This study was accomplished to develope an advanced wastewater treatment process using high MLSS in anoxic tank aimed to improve nutrient removal and to reduce wasting sludge. It was operated with 4 Modes with varing solid concentration and internal recycle ratios. Mode I, II, III was operated 1.0~1.5% MLSS concentration at anoxic tank with 50% sludge recycle rate, however, each internal recycle rate were 100%, 200%, 300% and Mode IV was operated 1.5~2.0% MLSS concentration at anoxic tank with 50% sludge recycle rate and 100% internal recycle rate. The COD removal efficiency didn't show any big difference from Mode I to IV. The average COD removal rate was over than 90%. The T-N removal rate was 73%, the highest rate in all mode. The 36% of SCOD is used for the denitrification and phosphorus release in the anoxic tank. Specific denitrification rate was 3.5mg $NO_3{^-}-N/g$ Mv/hr and denitrification time was 0.7hr. As MLSS concentration is higher in anoxic tank as denitrification time would be shorter. The T-P removal rate was average 70%. The phosphorus release accomplished from the anoxic tank because the anaerobic condition was prevalent in the anoxic due to the prompt completion of denitrification. Sludge production was 0.28 kgVSS/kg $BOD_{removed}$ under the 1.5% MLSS and 17 day SRT. It is prominent result which has 40% sludge reduce comparing with traditional activate sludge system.

Effect of Bioaugmentation on Performance of Intermittently Aerated Sewage Treatment Plant (Bioaugmentation이 간헐폭기 오수처리장치의 운전효율에 미치는 영향)

  • Jeong, Byung-Gon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.233-239
    • /
    • 2008
  • In order to improve reactor performance of existing sewage treatment plants, the feasibility of enhancing reactor performance by bioaugmentation using EM as bioaugmentation agent and the effects of anoxic: oxic time ratio on reactor performance were investigated. Continuous and intermittent aeration modes were compared under the 6 hr of HRT. Three different types of intermittent aeration modes, that is, 15 min, of anoxic:45 min of oxic, 30 min of anoxic: 30 min of oxic, and 45 min of anoxic: 15 min oxic respectively were chosen as test modes to study the effects of anoxic : oxic time ratios on reactor performance. The optimum anoxic: oxic time ratio was 30 min:30 min when considering simultaneous removal of organic, nitrogen and phosphorus. When applying EM into a continuously aerated reactor under the varying dosing rates of 50-200 ppm, reactor performance in terms of organic and nitrogen removal efficiencies was not improved at all. Nitrogen removal efficiency was increase when the EM dosing rate was increased. However the degree of improvement was slight when the EM was injected above 100 ppm. However optimum phosphorus removal was found at the EM dosing of 200 ppm. Thus it was found that optimum injection concentration of EM is 200 ppm. It is apparent that putting EM into a sewage treatment plant significantly affects the T-N removal efficiency of the reactor by enhancing denitrification efficiency especially in operational conditions of relatively long anoxic periods. To achieve reciprocal condition in a reactor with intermittent aeration it is necessary to enhance the reactor performance by EM injection. In the case of modifying existing continuously aerated reactors into intermittent aerated reactors, it is obvious that operating costs of aeration would be reduced by reducing aeration time when compared with existing conventional sewage treatment plants.