• Title/Summary/Keyword: anoxia

Search Result 40, Processing Time 0.022 seconds

Effect of Amino Acids on Anoxia-induced Cell Injury

  • Jung, Soon-Hee
    • Biomedical Science Letters
    • /
    • v.7 no.3
    • /
    • pp.127-131
    • /
    • 2001
  • This study was undertaken to examine the effect of amino acids on anoxia-induced cell injury in rabbit renal cortical slices. In order to induce anoxic cell injury, slices were exposed to a 100% $N_2$ atmosphere and control slices were exposed to 100% $O^2$. Irreversible cell injury was estimated by measuring lactate dehydrogenase (LDH) release and alterations in renal cell function were examined by measuring p-aminohippurate (PAH) uptake. Anoxia caused the increase in LDH release in a time-dependent manner. Glycine and glutathione almost completely prevented anoxia-induced LDH release. Of amino acids tested, glycine and alanine exerted the protective effect against anoxia-induced cell injury. However, asparagine with amide side chain, leucine and valine with hydrocarbon side chain, and basic amino acids (lysine, histidine, and arginine) were not effective. Anoxia-induced inhibition of PAM uptake was prevented by glycine. ATP content was decreased by anoxia, which was not affected by glycine. Anoxia-induced depletion of glutathione was significantly prevented by glycine. These results suggest that neutral amino acids with simple structure exert the Protective effect against anoxia-induced cell injury the involvement of specific interaction of amino acids and cell structure.

  • PDF

Effect of Anaerobic Treatment on Carbohydrate-Hydrolytic Enzyme Activities and Free Amino Acid Contents in Barley Malt

  • Yun, Song-Joong;Choi, Kyeong-Gu;Kim, Jin-Key
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.1
    • /
    • pp.19-22
    • /
    • 1998
  • Effects of acute anoxia on carbohydrate hydrolytic enzyme activities and free amino acid contents in malt were examined. Malts were prepared with barley grains germinated for 7 days which contained the highest levels of amylolytic and(1-3,1-4)-$\beta$-glucanase activities. $\alpha$-Amylase and $\beta$-amylase activities in malts were not significantly affected by anoxia for 5 or 10 h.(1-3,1-4)-$\beta$-Glucanase activity, however, decreased about 7 to 10% by anoxia for 5 or 10 h. Alanine and $\gamma$-aminobutyric acid content changed drastically. Alanine contents in malts increased by 2.2- and 2-fold, and $\gamma$-aminobutyric acid contents by 1.4- and 1.9-fold under anoxia for 5 and 10 h, respectively.

  • PDF

Anoxia Techniques to Eradicate Insects for Conservation of Cultural Properties in Museums (박물관에서의 저산소 농도를 이용한 살충 기술)

  • Oh, Joon-Suk
    • Journal of Conservation Science
    • /
    • v.27 no.2
    • /
    • pp.231-241
    • /
    • 2011
  • Anoxia Treatment using inert gas like nitrogen and argon has been used to eradicate insects successfully in museums as alternative of methyl bromide and toxic insecticide. Killing efficacy of insect for anoxia treatment is depend on species of insects, oxygen concentration, temperature, relative humidity and gas. It is possible to kill museum insects which are most tolerant in anoxia environment, within 1 month below 0.03% of oxygen concentration in temperature $15{\sim}25^{\circ}C$ and relative humidity 40~60% of museum environment. And various systems like bag, tent, bubble and chamber depending on size and quantity of objects, are used.

Effect of Anoxia Treatment on the Placental Alcohol Fermentation of Oriental Melon (Cucumis meio) at Different Developmental Stage (발달단계가 다른 참외 태좌부의 알콜발효에 미치는 무산소처리효과)

  • Suh, Dong-Hwan;Choi, Hong-Jip;Choi, Sung-Kuk;Jung, Jin;Hwang, Young-Soo;Kim, Dong-Hern
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.572-576
    • /
    • 1997
  • Effect of anoxia treatment on alcohol fermentation in the placenta of oriental melons (Cucumis melo) at different developmental stages was studied. Results showed that fruits at the rapid growth stage (stage III) contained the lowest amount of acetaldehyde and ethanol as compared with fruits at other developmental stages. During anoxia treatment, a steady increase in ethanol content was observed in the placenta of oriental melons, regardless of their developmental stages, while the increment of acetaldehyde content was relatively small. Alcohol dehydrogenase in growing and maturing stage fruits showed increased activity with the maximum value at one day after the onset of anoxia treatment and then decreased gradually. An increase in the activity of pyruvate decarboxylase was also observed during anoxia.

  • PDF

Effects of MK-801, CNQX, Cycloheximide and BAPTA-AM on Anoxic Injury of Hippocampal Organotypic Slice Culture (해마 조직 절편 배양을 이용한 무산소 손상에 대한 MK-801, CNQX, Cycloheximide 및 BAPTA-AM의 효과)

  • Moon, Soo-Hyeon;Kwon, Taek-Hyon;Park, Youn-Kwan;Chung, Heung-Seob;Suh, Jung Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.8
    • /
    • pp.1008-1018
    • /
    • 2000
  • Objective : Glutamate induced excitotoxicity is one of the leading causes of cell death under pathologic condition. However, there is controversy whether excitotoxicity may also participate in the neuronal death under low intensity insult such as simple hypoxia or hypoglycemia. To investigate the role of NMDA receptor in low intensity insult, we chose anoxia as the method of injury and used organotypically cultured hippocampal slice as the material of experiment. Materials & Methods : The hippocampal slices cultured for 2-3 weeks were exposed to 60 minutes of complete oxygen deprivation(anoxia). Neuronal death was assessed with Sytox stain. Corrected optical density of fluorescence in gray scale, used as cellular death indicator, was obtained from pictures taken at 24 and 48 hours following the insult. The well-known in vivo phenomenon of regional difference in susceptibility of hippocampal sub-fields to ischemic insult was reproduced in HOSC(hippocampal organotypic slice culture) by complete oxygen deprivation injury. Results : $CA_1$ was the most vulnerable to complete oxygen deprivation in hippocampus while $CA_3$ was resistant. Oxygen deprivation for 10 and 20 minutes with glucose(6.5g/l) present was insufficient to induce neuronal death in the cultured hippocampal slice. However, after 30 minutes exposure under anoxic condition, neuronal death was able to be detected in the center of $CA_1$ area. The intensity and area of fluorescence indicating cell death correlated with the duration of oxygen deprivation. NMDA receptor and non-NMDA receptor blocking with MK-801(30 & $60{\mu}M$) and CNQX($100{\mu}M$) did not provide cellular protection to HOSC against damage induced by oxygen deprivation, but increased intracellular calcium buffering capacity with BAPTA-AM($10{\mu}M$) was effective in preventing neuronal death (p=0.01, Student's t-test). Cycloheximide($1{\mu}g/ml$, $10{\mu}g/ml$) provided no protection to HOSC against insult of complete oxygen deprivation for 60 minutes and combined therapy of MK-801(30 & $60{\mu}M$) and cycloheximide(1 & $10{\mu}g/ml$) was also ineffective in preventing neuronal death. Conclusion : The results of this study show that the another mechanism not associated with glutamate receptor(NMDA & non NMDA) may play major role in cell death mechanisms induced by complete oxygen deprivation and increased intracellular calcium during anoxia may participate in the neuronal death mechanism of oxygen deprivation. Further investigation of the calcium entry channel activated during oxygen deprivation is necessary to understand the neuronal death of anoxia.

  • PDF

An effect of the Moschus were injected on the brain of mice (사향(麝香)이 생쥐의 뇌손상(腦損傷)에 미치는 영향(影響))

  • Lee, Bo-Young;Kang, Seok-Bong
    • The Journal of Korean Medicine
    • /
    • v.16 no.2 s.30
    • /
    • pp.299-311
    • /
    • 1995
  • The studies were investigated in the coma time and the survival time induced by KCN, the duration of breathing after decapitation, the survival time following ligation of both common carotid arteries and the survival time after it is treated for normobaric bypoxia with a nitrogen gas, a carbon dioxide gas or a vaccum in mice. The results were as follows: 1. In histotoxic anoxia, Moschus(0.4mg/kg, p.o) demonstrated a protective effect on coma induced by a sublethal dose of KCN(1.8mg/kg, i.v.) in mice. 2. Mice subjected to a lethal dose of KCN(3.0mg/kg, i.v.) did not die by administration of Moschus. 3. Moschus was significantly extended the duration of breathing after decapitation in mice. 4. Moschus showed a significant extension of survival time in mice following ligation of both common carotid arteries. 5. In the normobaric hypoxia with a nitrogen gas, Moschus showed a significant extension of survival time in mice. 6. In the normobaric hypoxia with a carbon dioxide gas, Moschus showed a significant shortness of survival time in mice. 7. In the normobaric hypoxia with a vaccum, Moschus showed a significant extension of survival time in mice. From the above results, it is suggested that Moschus demonstrated protective effects on the brain damages induced by cerebral anoxia.

  • PDF

MICROCIRCULATORY ABERRATIONS IN THE ISOLATED PERFUSED RAT LIVER INDUCED BY SODIUM CYANIDE, ANOXIA OR ACETAMINOPHEN

  • Jung, Kihwa
    • Toxicological Research
    • /
    • v.5 no.1
    • /
    • pp.27-35
    • /
    • 1989
  • When acetaminophen (25mM) was introduced into the perfused rat liver, the hepatic O2 uptake was rapidly inhibited first and then later slow-down. The rapid inhibition was found to be due to mitochondrial blockade, whereas the so-called slow inhibition" was associated with microcirulatory aberrations as evidenced by inhomogneous staining of the liver tissue by trypan blue infusion (0.1%). NaCN (0.5mM) also caused rapid and slow respiratory inhibitions, giving heterogeneous trypan blue staining.ning.

  • PDF

Nitric Oxide-cGMP-Protein Kinase G Pathway Contributes to Cardioprotective Effects of ATP-Sensitive $K^+$ Channels in Rat Hearts

  • Cuong, Cang Van;Kim, Na-Ri;Cho, Hee-Cheol;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.95-100
    • /
    • 2004
  • Ischemic preconditioning (IPC) has been accepted as a heart protection phenomenon against ischemia and reperfusion (I/R) injury. The activation of ATP-sensitive potassium $(K_{ATP})$ channels and the release of myocardial nitric oxide (NO) induced by IPC were demonstrated as the triggers or mediators of IPC. A common action mechanism of NO is a direct or indirect increase in tissue cGMP content. Furthermore, cGMP has also been shown to contribute cardiac protective effect to reduce heart I/R-induced infarction. The present investigation tested the hypothesis that $K_{ATP}$ channels attenuate DNA strand breaks and oxidative damage in an in vitro model of I/R utilizing rat ventricular myocytes. We estimated DNA strand breaks and oxidative damage by mean of single cell gel electrophoresis with endonuclease III cutting sites (comet assay). In the I/R model, the level of DNA damage increased massively. Preconditioning with a single 5-min anoxia, diazoxide $(100\;{\mu}M)$, SNAP $(300\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP) $(100\;{\mu}M)$ followed by 15 min reoxygenation reduced DNA damage level against subsequent 30 min anoxia and 60 min reoxygenation. These protective effects were blocked by the concomitant presence of glibenclamide $(50\;{\mu}M)$, 5-hydroxydecanoate (5-HD) $(100\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate, Rp-isomer (Rp-8-pCPT-cGMP) $(100\;{\mu}M)$. These results suggest that NO-cGMP-protein kinase G (PKG) pathway contributes to cardioprotective effect of $K_{ATP}$ channels in rat ventricular myocytes.

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.