• Title/Summary/Keyword: anodizing process

Search Result 101, Processing Time 0.023 seconds

Effect of Solution Temperature for Al Alloy Anodizing on Cavitation Characteristics (캐비테이션 특성에 미치는 알루미늄 합금의 양극 산화 용액 온도의 영향)

  • Lee, Seung-Jun;Lee, Jung-Hyung;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.140-146
    • /
    • 2015
  • The commercialization of aluminum had been delayed than other metals because of its high oxygen affinity. Anodizing is a process in which oxide film is formed on the surface of a valve metal in an electrolyte solution by anodic oxidation reaction. Aluminum has thin oxide film on surface but the oxide film is inhomogeneous having a thickness only in the range of several nanometers. Anodizing process increases the thickness of the oxide film significantly. In this study, porous type oxide film was produced on the surface of aluminum in sulfuric acid as a function of electrolyte temperature, and the optimum condition were determined for anodizing film to exhibit excellent cavitation resistance in seawater environment. The result revealed that the oxide film formed at $10^{\circ}C$ represented the highest cavitation resistance, while the oxide film formed at $15^{\circ}C$ showed the lowest resistance to cavitation in spite of its high hardness.

Anodic Oxidation (양극 산화)

  • 노해용
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.6
    • /
    • pp.16-23
    • /
    • 2000
  • Anodizing processes is the conversion of the aluminum surface to aluminum oxide while the part is the anode in an electrolytic cell. The object of the anodizing was increased corrosion resistant, paint adhesion and was provided unique, decorative colors. Many electrolytes, under different conditions, have been used for the anodic oxidation of alumminum and its alloys. This paper deals with the procedures used in the anodic oxidation of aluminum and its alloys, the nature and properties of the oxide films, their uses and anodizing equipment and process control.

  • PDF

Improvement of Corrosion Resistance of Aluminum Alloy with Wettability Controlled Porous Oxide films

  • Sakairi, M.;Goyal, V.
    • Corrosion Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.166-170
    • /
    • 2016
  • The combined process of porous type anodizing and desiccation treatment was applied to improve wettability of A1050 aluminum alloy. The water contact angles of anodized samples were increaseds considerably with desiccation treatment. However, there was no considerable effect of polishing and anodizing time on water contact angle. The corrosion behavior with the treatments was investigated electrochemically. The corrosion resistance of the samples in 3.5 mass% NaCl solutions increased with higher contact angle. Anodized and desiccated samples showed better corrosion resistance than un-desiccated samples around rest potential region.

Color Evolution in Anodized Titanium (열산화에 의한 티타늄의 발색효과)

  • 송오성;홍석배;이정임
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.325-329
    • /
    • 2002
  • We investigated the oxide thickness and color evolution with the oxidation temperatures between $370^{\circ}C$ and $950^{\circ}C$ for 30 minutes in an electric furnace. Oxide thickness and color index were determined by cross sectional field emission scanning electron microscopy (FESEM) images and digital camera images, respectively. We confirmed that thermal oxidation was suitable for the mass production of color-titanium products, while coloring process window was narrow compared with anodizing oxidation process.

Effect of Current Density on Porous Film Formation in Two-Step Anodizing for Al Alloy

  • Lee, Seung-Jun;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.125-129
    • /
    • 2016
  • Anodizing is a technology to generate thicker and high-quality films than natural oxide films by treating metals via electrochemical methods. Electrochemical manufacturing method of nano structure is an efficient technology in terms of cost reduction, high productivity and complicated shapes, which receives the spotlight in diverse areas. Especially, artificial films generated by anodizing technology possess excellent mechanical characteristics including hardness and wear resistance. It is also easy to modify thickness and adjust shape of those artificial films so that they are mainly used in sensors, filters, optical films and electrolytic condensers. In this study, experiment was performed to observe the effect of current density on porous film formation in two-step anodizing for Al alloy. Anodizing process was performed with 10 vol.% sulfuric acid electrolyte while the temperature was maintained at $10^{\circ}C$ using a double beaker. and $10{\sim}30mA/cm^2$ was applied for 40 minutes using a galvanostatic method. As a result, both pore diameters and distances between pores tended to increase as the local temperature and electrolysis activity increased due to the increase in applied current density.

Study on the Synthesis of Alumina Membrane by Anodization in Sulfuric Acid (황산전해액에서 양극산화에 의한 알루미나 막 제조에 관한 연구)

  • Kim, Hyun;Chang, Yoon Ho;Hahm, Yeong Min
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.756-762
    • /
    • 1997
  • The experiment was carried out to fabricate alumina membrane which has a cylindrical pore structure by anodizing aluminium plate in sulfuric acid solution with the electrochemical technique. The aluminium plate for anodizing was prepared by the pretreatment process such as chemical, electro-polishing and thermal treatment. The pore size distribution and the film thickness of alumina membrane were investigated by the implementation of scanning electron microscope(SEM) and BET method. The results show that the oxide film has a geometrical structures like a Keller model and that the membrane has a uniform pore distribution. The pore size and the oxide film thickness are dependent on the anodizing process variables such as the electrolyte concentration, the reation temperature and the anodizing current density.

  • PDF

Fabrication and Characterization of AAO Template with Variation of the Phosphoric Acid Amount of the Etching Solution (에칭용액의 인산 첨가량에 따른 양극산화 알루미늄 템플레이트의 제작 및 특성)

  • Jo, Ye-Won;Kim, Yong-Jun;Yeo, Jin-Ho;Lee, Sung-Gap;Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.7
    • /
    • pp.448-451
    • /
    • 2014
  • Anodic aluminum oxides (AAO) fabricated by the two-step anodizing process have attracted much attention for the fabrication of nano template because of pore structure with high aspect ratio, low cost process and ease of fabrication. AAOs are characterized by a homogeneous morphology of parallel pores that grow perpendicular to the template surface with a narrow distribution of diameter, length and inter-pores spacing, all of which can be easily controlled by suitably choosing of the anodizing parameters such as pH of the electrolyte, anodizing voltage and duration of anodizing. In this study, AAO templates were characterized by X-ray diffraction and field-emission scanning electron microscope (FE-SEM). The dependence of the pore size change according to the amount of addition of phosphoric acid, which was used to remove the initial alumina oxide layer, was not observed.

Influences of anodizing on improvement in reflection rate of aluminum surface (알루미늄 표면의 정반사율 향상에 미치는 양극산화의 영향)

  • Choi, Kyang-Kun;Kim, Dong-Hyoun;Kim, Hoon;Nam, In-Tak
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.207-211
    • /
    • 2002
  • Anodizing film was prepared by anodic oxidation of pure aluminum(purity > 99.50) using DC power supply for constant current mode in an electrolytic solution of surface of sulfuric acid. Effects of pre-treatment process such as chemical polishing, acid cleaning, alkali etching before anodic oxidation, were studied to microstructures and surface morphologies. A roughness on surface of anodizing film had to be decreased for amorphous phase by anodic oxidation. A roughness on surface of anodizing film decrease as annealing temperature increased in chemical polishing.

  • PDF

Study on Anodizing at Constant Current for Sealing Treatment of Nano-diamond Powder (나노 다이아몬드 분말 봉공처리 적용을 위한 정전류에서의 알루미늄 양극산화 제조 연구)

  • Kang, Soo Young;Lee, Dae Won
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • In this study, an aluminum oxide layer for sealing treatment of nano-diamond powder was synthesized by anodizing under constant current. The produced pore size and oxide thickness were investigated using scanning electron microscopy. The pore size increased as the treatment time increased, current density increased, sulfuric acid concentration decreased, which is different from the results under constant voltage, due to a dissolution of the oxide layers. The oxide layer thickness by the anodizing increased as temperature, time, and current density increased. The results of this study can be applied to optimize the sealing treatment process of nano-diamond particles of 4-10 nm to enhance the resistances of corrosion and wear of the matrix.