• Title/Summary/Keyword: annual rainfall depth

Search Result 44, Processing Time 0.016 seconds

Eutrophication and Seasonal Variation of Water Quality in Masan-Jinhae Bay (마산-진해만의 수질 부영양화 및 계절 변동)

  • Cho, Kyung-Je;Choi, Man-Young;Kwak, Seung-Kook;Im, Sung-Ho;Kim, Dae-Yun;Park, Jong-Gyu;Kim, Young-Eui
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.193-202
    • /
    • 1998
  • Water quality of Masan-Jinhae Bay was monitored from January 1996 to August 1997. The monitoring focused on the spatial and vertical gradients and seasonal changes of eutrophication parameters such as nutrients, DO and water transparency. Flagellate phytoplanktons persistently bloomed from April to October with monospecific or mixed algal blooms and dynamic algal successions were observed in this area. Algal blooms were highly correlated with salinity drops and made the water less transparent. Stratification of oxygen content was persistent through summer and oligo-oxygenation was developed in the bottom waters. Nutrient gradients were consistently maintained through the depth in summer and through spatial distribution from inner Masan Bay to outer Jinhae Bay in winter. Except the rainfall seasons, water quality was under the influence of the waste waters discharged from watershed around the Masan Bay. The waste waters would act as the primary factor for the water quality deterioration of the bay. Literature data for eutrophication were gathered and analyzed to review the water quality trends of the Masan and Jinhae bays since 1970. Annual mean COD and phosphate concentration consistently increased from 1975 to 1990 and decreased or dropped after 1991. The sediment of inner part of Masan Bay was dredged from 1991 to 1994 as a decontamination process and it is assumed that the dredging has weakened more or less the deterioration trend of the water quality of the bay.

  • PDF

Hydrological homogeneous region delineation for bivariate frequency analysis of extreme rainfalls in Korea (다변량 L-moment를 이용한 이변량 강우빈도해석에서 수문학적 동질지역 선정)

  • Shin, Ju-Young;Jeong, Changsam;Joo, Kyungwon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.49-60
    • /
    • 2018
  • The multivariate regional frequency analysis has many advantages such as an adaption of regional parameters and consideration of a correlated structure of the data. The multivariate regional frequency analysis can provide the broader and more detailed information for the hydrological variables. The multivariate regional frequency analysis has not been attempted to model hydrological variables in South Korea yet. Therefore, it is required to investigate the applicability of the multivariate regional frequency analysis in the modeling of the hydrological variables. The current study investigated the applicability of the homogeneous region delineation and their characteristics in bivariate regional frequency analysis of annual maximum rainfall depth-duration data. The K-medoid method was employed as a clustering method. The discordancy and heterogeneous measures were used to assess the appropriateness of the delineation results. According to the results of the clustering analysis, the employed stations could be grouped into five regions. All stations at three of the five regions led to acceptable values of discordancy measures than the threshold. The stations where have short record length led to the large discordancy measures. All grouped regions were identified as a homogeneous region based on heterogeneous measure estimates. It was observed that there are strong cross-correlations among the stations in the same region.

A Groundwater Potential Map for the Nakdonggang River Basin (낙동강권역의 지하수 산출 유망도 평가)

  • Soonyoung Yu;Jaehoon Jung;Jize Piao;Hee Sun Moon;Heejun Suk;Yongcheol Kim;Dong-Chan Koh;Kyung-Seok Ko;Hyoung-Chan Kim;Sang-Ho Moon;Jehyun Shin;Byoung Ohan Shim;Hanna Choi;Kyoochul Ha
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

Research on the Effect of the Control Methods of Irrigation Water on the Growth and Yield of Paddy Rice. (한발기에 있어서 용수관리 방법이 수도생육과 그 수량에 미치는 영향에 관한 연구)

  • 김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2177-2190
    • /
    • 1971
  • This experiment was made to determienthe effect of various soil moisture contents in simulated drought conditions on different stages of rice growth. The drought conditions were developed at such three rice-growing stages as transplanting, immediately after transplanting and young ear forming. Three different lengths of drought periods, which are ten days, twenty days and thirty days, were applied for each growing stage of rice. The rice variety used this experiment is Nong-rim 29. This experiment was conducted at the university farm of the Kon-Kuk University during the period of $1968{\sim}1970$. Three reprications for each of 12 treatments and split plot design were employed in this study. Bottomless wood square boxes, $1^m{\times}1^m{\times}1^m$, were burried in the test plot and box top was covered with poloyethylene sheets to avoid natural rainfall drops. Standard plots were irrigated continuously with a water depth of 40mm/day and those of drought treatments were irrigated continuously up to the beginning of the planned drought period, and they were irrigated again with a depth of 40mm/day up to the maturing stage of rice. Other methods for rice raising followed those methods developed by the Field Crops Experiment Station of the Office of Rural Development. During this experiments, climatic conditions in regard to rainfalls, sunshine hours, and temperatures were observed. According to this observation, those values measured deviate slightly from the annual means. However the growing condition of rice plants were normal. The pH value of irritation water is nearly neutral, and soils in the test plots are relatively fertile, being similar to ordinary paddy soils. Analysis of variances for number of stalks, plan-height, ear sprouting date, length of stalks, ear length, number of ears per plant, fertility, grain weitght, weight of plant, and yield were carried out. The variances for plant height, ear sprouting date, length of stalk ear length, and yield has statistical significance under drought treatments applied at three different growing stages. The variance showing the effect of lengths of drought period is highly significant for all the treatments studied except that of grain weight. The interaction between drought periods and drought treatments at different growing stages is significant for plant height, stalk length, ear length, number of ears, fertility and yield, these results indicated that droughts at different growing stages have influence on plant height, ear length, yield, and length of drought period also has strong influence on all factors studied except grain weight. The combination of drought treatments at different rice growing stages and lengths of drought periods has different effects on various agronomic characteristics, including yield. Plant height under drought treatment practiced at transplanting stage is the lowest, and drought treatment applied immediately after transplanting resulted in the least number of stalks. The effect of different lengths of drought periods on plant height and number of stalks depends signis ficantly on increasing days of drought. Ear sprouting date tends to be delayed for one or two days undedrought treatments at transplanting period and with increasing days of drought. Better yield is secured in drought treatment applied immediately after transplanting. Adverse effect war observed when drought treatment was applied at ear forming period. These effects may be attributed to the alternation of irrigation and drought causing vigorous root activity. In general, yield linearly decreases as the length of the drought period increases. The results obtained in this study demonstrate that, in order to mimimize damage due to drought, and, to save irrigation water, paddy fields, immediately after transplanting, may be not irrigated, since there is sufficient moisture in the soil, and that sufficient irrigation water should be applied again in the ear forming stage of rice plant.

  • PDF