• Title/Summary/Keyword: annual production

Search Result 934, Processing Time 0.028 seconds

Perenniality-Potential and challenges for future sustainable crop production

  • Paterson, Andrew
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.11-11
    • /
    • 2017
  • The most drought resistant among the five most important cereal crops, and a key dual-use (grain and biomass) crop in regions containing some of the world's most degraded soils, sorghum has inherent climate resilience that is likely to become more important under environmental conditions that are projected by many climate change models. The importance of sorghum might be further elevated by the development of productive genotypes that increase the extent and duration of soil cover beyond those of conventional annual crops, mitigating or even reversing losses of ecological capital through multiple crops from single plantings. Rich genetic and genomic resources have been developed to link Sorghum phenotypic diversity to its molecular basis, and in particular the genus has become a model for dissecting the molecular control of perenniality. Nature has made Sorghum perennial at least twice, and crosses between wild perennials and cultivated sorghums show the feasibility of developing genotypes with varying degrees of investment in perenniality while still providing harvestable food, feed, sugar and/or cellulose. Genetic analysis of progeny from these crosses is revealing the hereditary basis of traits related to ratooning and perenniality and providing diagnostic DNA markers. One perennial Sorghum species has adapted to continents and latitudes far beyond the reach of its progenitors, surviving stresses year after year that are only periodically experienced by conventional (annual) sorghum, and may also harbor novel alleles that may mitigate production challenges in conventional annual sorghums.

  • PDF

Energy self-sufficiency of office buildings in four Asian cities

  • Kim, Jong-Jin
    • Advances in Energy Research
    • /
    • v.2 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • This paper examines the climatic and technical feasibilities of zero energy buildings in Seoul, Shanghai, Singapore and Riyadh. Annual and seasonal energy demands of office buildings of various scales in the above cities were compared. Using optimally tilted rooftop PV panels, solar energy production potentials of the buildings were estimated. Based on the estimates of onsite renewable energy production and building energy consumption, the energy self-sufficiencies of the test buildings were assessed. The economic feasibilities of the PV systems in the four locations were analyzed. Strategies for achieving zero energy buildings are suggested.

An Integrated Production-Inventory Model (통합생산재고모형(統合生産在庫模型)에 관한 연구(硏究))

  • No, In-Gyu;Park, Sang-Don
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.29-37
    • /
    • 1985
  • This paper studies a production-inventory model which unifies the inventory problem of raw materials and the finished product for a single product manufacturing system. The integrated production-inventory model is formulated wth a nonlinear mixed integer programming problem. An algorithm is developed by utilizing the finite explicit enumeration method. The algorithm guarantees to generate an optimal policy for minimizing the total annual variable cost. A mumerical example involving 15 raw materials is given to illustrate the recommended solution procedure.

  • PDF

Energy Flow of Benthic Community at the Intertidal Zone of Kum River Estuary (錦江河口 潮間帶 低棲生物群集의 에너지 流轉)

  • Kim, Joon-Ho;Kyung-Je Cho;Chi Shick Kim
    • The Korean Journal of Ecology
    • /
    • v.8 no.1
    • /
    • pp.7-14
    • /
    • 1985
  • Biomass, carbon, nitrogen and phosphorus standing crops of bethic community were estimated at the trophic levels in the intertidal zone of Kum river estuary. Annual mean biomass of zoobenthos was 130.5g/$m^2$, body fraction 26.7g/$m^2$ and shell fraction 103.8 g/$m^3$. Biomass estimated as ash-free dry weight was total 28.9g/$m^2$, body fraction 20.2g/$m^2$ and shell fraction 8.7g/$m^2$ Carbon standing crops of zoobenthos were 15.9gC/$m^2$, in which organic carbon content was 7.0gC/$m^2$ and carbonate carbon was 8.9gC/$m^2$. Production efficiency by carbon standing crops from sediment to herbivores and carnivores and 10.6% and 16.0% in phosphorus, respectively. Annual primary production of benthic algae was crudely estimated to 329g.dw/$m^2$/yr by using the biomass and turn-over rate of benthic algae.

  • PDF

A Study on the Performance Prediction for Small Hydro Power Plants (소수력발전소의 성능예측)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.448-451
    • /
    • 2005
  • This paper presents the methodology to analyze flow duration characteristics and performance prediction for small hydro power(SHP) plants and its application. The flow duration curvecan be decided by using monthly rainfall data at the most of the SHP sites with no useful hydrological data. It was proved that the monthly rainfall data can be characterized by using the cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP plants. And, the performance prediction has been studied and development. One SHP plant was selected and performance characteristics was analyzed by using the developed technique. Primary design specfications such as design flowrate, plant capacity, operational rate and annual electricity production for the SHP plant were estimated. It was found that the methodology developed in this study can be a useful tool to predict the performance of SHP plants and candidate sites in Korea.

  • PDF

The Field Test of Power Performance Measurement for U50 Wind Turbine (U50 풍력발전기 출력성능 실증연구)

  • Hwang, Jin-Su;Jang, Seong-Tae;Kim, Dae-Hyun;Bang, Jo-Hyug;Ryu, Ji-Yune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.372-375
    • /
    • 2007
  • 750kW gearless type wind turbine, named U50, is developed by UNISON in Korea. The newly developed wind turbine should be evaluated the power curve and the estimated annual energy production by following international standard to verify the power performance characteristics. This paper shows the test and evaluation procedure according to IEC 61400-12-1 which specifies a procedure of measuring the power performance characteristics of a single wind turbine and applies to the testing of wind turbines of all types and sized connected to the electrical power network. And this paper also shows the power performance characteristics for U50 wind turbine which is determined in accordance with IEC regulation.

  • PDF

Optimal Design of a Direct-Driven PM Wind Generator Aimed at Maximum AEP using Coupled FEA and Parallel Computing GA

  • Jung, Ho-Chang;Lee, Cheol-Gyun;Hahn, Sung-Chin;Jung, Sang-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.552-558
    • /
    • 2008
  • Optimal design of the direct-driven Permanent Magnet(PM) wind generator, combined with F.E.A(Finite Element Analysis) and Genetic Algorithm(GA), has been performed to maximize the Annual Energy Production(AEP) over the entire wind speed characterized by the statistical model of wind speed distribution. Particularly, the proposed parallel computing via internet web service has contributed to reducing excessive computing times for optimization.

Real Option Valuation of a Wind Power Project Based on the Volatilities of Electricity Generation, Tariff and Long Term Interest Rate (발전량, 가격, 장기금리 변동성을 기초로 한 풍력발전사업의 실물옵션 가치평가)

  • Kim, Youngkyung;Chang, Byungman
    • New & Renewable Energy
    • /
    • v.10 no.1
    • /
    • pp.41-49
    • /
    • 2014
  • For a proper valuation of wind power project, it is necessary to consider volatilities of key parameters such as annual energy production, electricity sales price, and long term interest rate. Real option methodology allows to calculate option values of these parameters. Volatilities to be considered in wind project valuation are 1) annual energy production (AEP) estimation due to meteorological variation and estimation errors in wind speed distribution, 2) changes in system marginal price (SMP), and 3) interest rate fluctuation of project financing which provides refinancing option to be exercised during a loan tenor for commercial scale projects. Real option valuation turns out to be more than half of the sales value based on a case study for a FIT scheme wind project that was sold to a financial investor.

Analysis on Electrical Characteristics of PV Cells considering Ambient Temperature and Irradiance Level (주변온도와 일사량을 고려한 PV Cell의 전기적 특성 분석)

  • Park, Hyeonah;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.481-485
    • /
    • 2016
  • When analyzing economic feasibility for installing a PV generation plant at a certain location, the prediction of possible annual power production at the site using the target PV panels should be conducted on the basis of the local weather data provided by a local weather forecasting office. In addition, the prediction of PV generating power under certain weather conditions is useful for fault diagnosis and performance evaluation of PV generation plants during actual operation. This study analyzes PV cell characteristics according to a variety of weather conditions, including ambient temperature and irradiance level. From the analysis and simulation results, this work establishes a proper model that can predict the output characteristics of PV cells under changes in weather conditions.

Optimal Design of Direct-Driven Wind Generator Using Genetic Algorithm Combined with Expert System (Genetic Algorithm과 Expert System의 결합 알고리즘을 이용한 직구동형 풍력발전기 최적설계)

  • Kim, Shang-Hoon;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.149-156
    • /
    • 2010
  • In this paper, the optimal design of a wind generator, implemented with the hybridized GA(Genetic Algorithm) and ES(Expert System), has been performed to maximize the AEP(Annual Energy Production) over the whole wind speed characterized by the statistical model of wind speed distribution. In particular, to solve the problem of calculation iterate, ES finds the superior individual and apply to initial generation of GA and it makes reduction of search domain. Meanwhile, for effective searching in reduced search domain, it propose Intelligent GA algorithm. Also, it shows the results of optimized model 500[kW] wind generator using hybridized algorithm and benchmark result of compare with GA.