• Title/Summary/Keyword: annual maximum daily rainfall

Search Result 41, Processing Time 0.025 seconds

Frequency Analysis of Extreme Rainfall by L-Moments (L-모멘트법에 의한 극치강우의 빈도분석)

  • Maeng, Sung-Jin;Lee, Soon-Hyuk;Kim, Byung-Jun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.225-228
    • /
    • 2002
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall in 38 Korean rainfall stations. To select the fit appropriate distribution of annual maximum daily rainfall data according to rainfall stations, applied were Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) probability distributions were applied. and their aptness was judged Dusing an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, the aptitude was judged of applied distributions such as GEV, GLO and GPA. The GEV and GLO distributions were selected as the appropriate distributions. Their parameters were estimated Targetingfrom the observed and simulated annual maximum daily rainfalls and using Monte Carlo techniques, the parameters of GEV and GLO selected as suitable distributions were estimated and. dDesign rainfallss were then derived, using the L-moment. Appropriate design rainfalls were suggested by doing a comparative analysis of design rainfall from the GEV and GLO distributions according to rainfall stations.

  • PDF

Estimation of Design Rainfall Using 3 Parameter Probability Distributions (3변수 확률분포에 의한 설계강우량 추정)

  • Lee, Soon Hyuk;Maeng, Sung Jin;Ryoo, Kyong Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.595-598
    • /
    • 2004
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.

  • PDF

Frequency Analysis of Extreme Rainfall Using 3 Parameter Probability Distributions (3변수 확률분포형에 의한 극치강우의 빈도분석)

  • Kim, Byeong-Jun;Maeng, Sung-Jin;Ryoo, Kyong-Sik;Lee, Soon-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.31-42
    • /
    • 2004
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.

Comparison of Precipitation Characteristics using Rainfall Indicators Between North and South Korea (강수지표를 이용한 남·북한 강수특성 비교)

  • Lee, Bo-Ram;Chung, Eun-Sung;Kim, Tae-Woong;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2223-2235
    • /
    • 2013
  • This study aimed to understand temporal and spatial trends of rainfall characteristics in South and North Korea. Daily rainfall observed at the 65 stations in South Korea between 1963 and 2010 and the 27 stations in North Korea between 1973 and 2010 were analyzed. Rainfall Indicators for amount, extremes, frequency of rainfall were defined. Province-based indicators in the recent 10 years (i.e., between 2001 and 2010) were compared to those in the past (i.e., between 1963/1973 and 2000 for South/North Korea). In the recent 10 years, all the indicators except for the number of wet days (NWD) and 200-yr frequency rainfall (Freq200) increased in South Korea and all the indicators except for the annual mean daily rainfall over wet days (SDII) and annual total rainfall amount (TotalDR) decreased in North Korea. Furthermore, we performed the Mann-Kendall trend test based on the annual indicators. In some stations, decreasing trends in the past and increasing trends in the recent 10 years were found, and such opposite trends between two periods suggest he limitation in predicting and analyzing the rainfall characteristics based on the average. Results from this study can be used in analyzing the impact of climate change and preparing adaptation strategies for the water resources management.

Rainfall Effects on Discharged Pollution Load in Unit Watershed Area for the Management of TMDLs (수질오염총량관리 배출부하량에 대한 강우영향 분석연구)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.648-653
    • /
    • 2010
  • Discharged pollution load for the management of Total Maximum Daily Loads (TMDLs) is calculated on the basis of rainfall data for reference year. Rainfall has an influence on discharged pollution load in unit watershed with combined sewer system. This study reviewed the status of discharged pollution load and rainfall conditions. We also investigated rainfall effects on discharged pollution load by analyzing change of the load in accordance with increase of rainfall. The change ratio of discharged pollution load was 18.6% while inflow load only 5.8% for 5 years from 2004 to 2008 in Daejeon district. The greatest rainfall and rain days were over 2 times than the least during the period. This change in rainfall could have great effect on discharged pollution load. The analysis showed that discharged pollution load increased 2.1 times in case rainfall increased 2 times and 1.2 times in case rain days increased 2 times. Rainfall effects, therefore, should be considered to make resonable evaluation of discharged pollution load in the assessment of annual performances.

Conversion Factor Calculation of Annual Maximum Precipitation in Korea Between Fixed and Sliding Durations (고정시간과 임의시간에 따른 우리나라 연최대강우량의 환산계수 산정)

  • Oh, Tae Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.515-524
    • /
    • 2008
  • An estimation of reliable probability precipitation is one of the most important processes for reasonable hydrologic structure design. A probability precipitation has been calculated by frequency analysis using annual maximum rainfall series on the each duration among the observed rainfall data. Annual maximum rainfall series have abstracted on hourly rainfall data or daily rainfall data. So, there is necessary to proper conversion factor between the fixed and sliding durations. Therefore, in this study, conversion factors on the each duration between fixed and sliding durations have calculated using minutely data compared to hourly and daily data of 37 stations observed by Meteorological Administration in Korea. Also, regression equations were computed by regression analysis of conversion factors on the each duration. Consequently, conversion factors were used basis data for calculations of stable probability precipitation.

Rainfall Trend Detection Using Non Parametric Test in the Yom River Basin, Thailand

  • Mama, Ruetaitip;Bidorn, Butsawan;Namsai, Matharit;Jung, Kwansue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.424-424
    • /
    • 2017
  • Several studies of the world have analyzed the regional rainfall trends in large data sets. However, it reported that the long-term behavior of rainfall was different on spatial and temporal scales. The objective of this study is to determine the local trends of rainfall indices in the Yom River Basin, Thailand. The rainfall indices consist of the annual total precipitation (PRCTPOP), number of heavy rainfall days ($R_{10}$), number of very heavy rainfall days ($R_{20}$), consecutive of dry days (CDD), consecutive of wet days (CWD), daily maximum rainfall ($R_{x1}$), five-days maximum rainfall ($R_{x5}$), and total of annual rainy day ($R_{annual}$). The rainfall data from twelve hydrological stations during the period 1965-2015 were used to analysis rainfall trend. The Mann-Kendall test, which is non-parametric test was adopted to detect trend at 95 percent confident level. The results of these data were found that there is only one station an increasing significantly trend in PRCTPOP index. CWD, which the index is expresses longest annual wet days, was exhibited significant negative trend in three locations. Meanwhile, the significant positive trend of CDD that represents longest annual dry spell was exhibited four locations. Three out of thirteen stations had significant decreasing trend in $R_{annual}$ index. In contrast, there is a station statistically significant increasing trend. The analysis of $R_{x1}$ was showed a station significant decreasing trend at located in the middle of basin, while the $R_{x5}$ of the most locations an insignificant decreasing trend. The heavy rainfall index indicated significant decreasing trend in two rainfall stations, whereas was not notice the increase or decrease trends in very heavy rainfall index. The results of this study suggest that the trend signal in the Yom River Basin in the half twentieth century showed the decreasing tendency in both of intensity and frequency of rainfall.

  • PDF

Analysis of the effect of climate change on IDF curves using scale-invariance technique: focus on RCP 8.5 (Scale-Invariance 기법을 이용한 IDF 곡선의 기후변화 영향 분석: RCP 8.5를 중심으로)

  • Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.995-1006
    • /
    • 2016
  • According to 5th IPCC Climate Change Report, there is a very high likelihood that the frequency and intensity of extreme rainfall events will increase. In reality, flood damage has increased, and it is necessary to estimate the future probabilistic design rainfall amount that climate change is reflected. In this study, the future probabilistic design precipitation amount is estimated by analyzing trends of future annual maximum daily rainfall derived by RCP 8.5 scenarios and using the scale-invariance technique. In the first step, after reviewing the time-scale characteristics of annual maximum rainfall amounts for each duration observed from 60 sites operating in Korea Meterological Administration, the feasibility of the scale-invariance technique are examined using annual daily maximum rainfall time series simulated under the present climate condition. Then future probabilistic design rainfall amounts for several durations reflecting the effects of climate change are estimated by applying future annual maximum daily rainfall time series in the IDF curve equation derived by scale-invariance properties. It is shown that the increasing trend on the probabilistic design rainfall amount has resulted on most sites, but the decreasing trend in some regions has been projected.

Frequency Distribution of Annual Maximum Daily Rainfall, Temperature and Pressure at Major Meteorological Stations in South Korea (우리나라 주요측후소의 연최극 일강수량 기온 및 기압의 빈도분포)

  • 최병호
    • Water for future
    • /
    • v.17 no.2
    • /
    • pp.99-106
    • /
    • 1984
  • This paper resents frequency distribution of annual maxima of daily rainfall, temperature and pressure at twelve major meteorological stations in South Korea based on avaliable series of annual maxima. As a first step a traditional way of estimating the probabilities of extremes using Jenkinson's method was used here. The results are presented in the form of graph giving the various recurrence periods of rainfall, temperature and pressure and the frequency distributions obtained are discussed.

  • PDF

Effect of Period of Record on Probable Rainfall Prediction (강우기록년한이 확률수문량 추정에 미치는 영향에 관한연구)

  • 이근후;한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.2
    • /
    • pp.45-53
    • /
    • 1981
  • Long term precipitation gaging station record (58 years) was analyzed by progressive mean method to compare the estimated effective period of records for computing mean and probable values. Obtained results are as follows: 1. Fifty-eight years precipitation records at Jinju, Gyeong Sang Nam Do was analyzed by double mass analysis method. Result was appeared that the record was consistent with time. 2. The effective period of records for estimating mean values with the departure of 5% or less from the true mean are up to 33 years for annual precipitation, 20 years for annual maximum daily precipitation and 45 years for maximum successive dry days in summer season. 3. To estimate the probable values by Gumbel-Chow method within the departure of 5% level from true value, periods of 51 years, 38 years and 45 years were required for annual precipitation, annual maximum daily precipitation and maximum successive dry days in summer season, respectively.

  • PDF