• Title/Summary/Keyword: annual energy production

Search Result 214, Processing Time 0.026 seconds

Environmental Damage Theory Applicable to Kenya

  • ONYANGO, James;KIANO, Elvis;SAINA, Ernest
    • Asian Journal of Business Environment
    • /
    • v.11 no.1
    • /
    • pp.39-50
    • /
    • 2021
  • Purpose: This study seeks to establish the environmental damage theory applicable to Kenya. The analysis is based on annual data drawn from World Bank on carbon dioxide emissions (CO2e) and gross domestic product per capita (GDPPC) for Kenya spanning 1963 to 2017. Research Methodology: The study adopts explanatory research design and autoregressive distributed lag model for analysis. Results: The results revealed a coefficient of -0.017 for GDPPC and 0.004 for GDPPC squared indicating that economic growth has negative effect on CO2e in the initial stages of growth but positive effect in the high growth regime with the marginal effect being higher in the initial growth regime. The findings suggest a U-shaped relationship consistent with Brundtland Curve Hypothesis (BCH). Conclusions: The findings emphasize the need for sustainable development path that enables present generations to meet own needs without compromising the capacity of future generations to meet their own. Sustainable development may include, investment in renewable energies like wind, solar and adoption of energy efficient technologies in production and manufacturing. The study concludes that BCH is applicable to Kenya and that developing affordable and effective mechanisms to boost sustainable development implementation is necessary to decrease the anthropogenic impact in the environment without any attendant reduction in the economic growth.

Productive Structure and energy Storage of the Delta of Nak Dong River (낙동강 하류 삼각주지역 갈대초지의 생산구조와 에너지저장에 관한 연구)

  • 장남기;강호감
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.3
    • /
    • pp.220-225
    • /
    • 1984
  • In the grassland ecosystem dominated by Phragmites longivalvis in the delta of Nak Dong River, the production, decomposition, and accumulation of organic were estimated by the theoretical analysis. The amounts of organic carbon and organic matter of litter are $1020.43g/m^2\;and\;591.90g/m^2$, respectively. The amounts of organic matter and organic carbon on the grassland floor is $1154.96g/m^2\;and\;669.93g/m^2$, the ratio of annual litter production 'L' to the amount of accumulation on the top mineral soil (F, H and $A_2$ horizons) provided estimates of decay constant k. Constant k is 0.884 in the Phragmites longivalvis community. The vertical levels of organic matter and organic carbon is the highest in 120-140 cm of photosythetic system and in 0-20 cm of non-photosyntic system.

  • PDF

Manipulation of Cassava Cultivation and Utilization to Improve Protein to Energy Biomass for Livestock Feeding in the Tropics

  • Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-472
    • /
    • 2003
  • Cassava (Manihot esculenta, Crantz), an annual tropical tuber crop, was nutritionally evaluated as a foliage for ruminants, especially dairy cattle. Cultivation of cassava biomass to produce hay is based on a first harvest of the foliage at three months after planting, followed every two months thereafter until one year. Inter-cropping of leguminous fodder as food-feed between rows of cassava, such as Leucaena leucocephala or cowpea (Vigna unculata), enriches soil fertility and provides additional fodder. Cassava hay contained 20 to 25% crude protein in the dry matter with good profile of amino acids. Feeding trials with cattle revealed high levels of DM intake (3.2% of BW) and high DM digestibility (71%). The hay contains tannin-protein complexes which could act as rumen by - pass protein for digestion in the small intestine. As cassava hay contains condensed tannins, it could have subsequent impact on changing rumen ecology particularly changing rumen microbes population. Therefore, supplementation with cassava hay at 1-2 kg/hd/d to dairy cattle could markedly reduce concentrate requirements, and increase milk yield and composition. Moreover, cassava hay supplementation in dairy cattle could increase milk thiocyanate which could possibly enhance milk quality and milk storage, especially in small holder-dairy farming. Condensed tannins contained in cassava hay have also been shown to potentially reduce gastrointestinal nematodes in ruminants and therefore could act as an anthelmintic agent. Cassava hay is therefore an excellent multi-nutrient source for animals, especially for dairy cattle during the long dry season, and has the potential to increase the productivity and profitability of sustainable livestock production systems in the tropics.

Biocontrol of Maize Diseases by Microorganisms (미생물을 활용한 옥수수병의 생물학적 방제)

  • Jung-Ae, Kim;Jeong-Sup, Song;Min-Hye, Jeong;Sook-Young, Park;Yangseon, Kim
    • Research in Plant Disease
    • /
    • v.28 no.4
    • /
    • pp.195-203
    • /
    • 2022
  • Zea mays, known as maize or corn, is a major staple crop and an important source of energy for humans and animals, thus ensuring global food security. Approximately 9.4% of the loss of total annual corn production is caused by pathogens including fungi, bacteria, and viruses, resulting in economic losses. Although the use of fungicides is one of the most common strategies to control corn diseases, the frequent use of fungicides causes various health problems in humans and animals. In order to overcome this problem, an eco-friendly control strategy has recently emerged as an alternative way. One such eco-friendly control strategy is the use of beneficial microorganisms in the control of plant pathogens. The beneficial microorganisms can control the plant pathogens in various ways, such as spatial competition with plant pathogens, inhibition of fungal or bacterial growth via the production of secondary metabolites or antibiotics, and direct attack to plant pathogens via enzyme activity. Here, we reviewed microorganisms as biocontrol agents against corn diseases.

Towards Integrated Pest Management of Rice in Korea

  • Lee, Seung-Chan
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.205-240
    • /
    • 1992
  • In reality, it is a green revolution of the entire agricultural matrix in Korea that integrated pest control plays an important role in the possible breakthrough in rice self-sufficiency. In paddy agroecosystem as man-modified environment, rice is newly established every year by transplantation under diverse water regimes which affect a microclimate. Standing water benefits rice by regulating the microclimate, but it favors the multiplication of certain pets through the amelioration of the microclimate. Further, the introduction of high yielding varieties with the changing of cultural practices results in changing occurrence pattern of certain pests. In general, japonica type varieties lack genes resistant to most of the important pests and insect-borne virus diseases, whereas indica type possesses more genes conferring varietal resistance. Thus, this differences among indica type, form the background of different approaches to pest management. The changes in rice cultivation such as double cropping, growing high-yielding varieties requiring heavy fertilization, earlier transplanting, intensvie-spacing transplanting, and intensive pesticide use as a consequence of the adoption of improves rice production technology, have intensified the pest problems rather than reduced them. The cultivation of resistant varieties are highly effective to the pest, their long term stability is threathened because of the development of new biotypes which can detroy these varieties. So far, three biotypes of N. lugens are reported in Korea. Since each resistant variety is expected to maintain several years the sequential release of another new variety with a different gene at intervals is practised as a gene rotation program. Another approach, breeding multilines that have more than two genes for resistance in a variety are successfully demonstrated. The average annual rice losses during the last 15 years of 1977-’91 are 9.3% due to insect pests without chemical control undertaken, wehreas there is a average 2.4% despite farmers’insecticide application at the same period. In other words, the average annual losses are prvented by 6.9% when chemical control is properly employed. However, the continuous use of a same group of insecticides is followed by the development of pest resistance. Resistant development of C. suppressalis, L. striatellus and N. cincticeps is observed to organophosphorous insecticides by the mid-1960s, and to carbamates by the early 1970s in various parts of the country. Thus, it is apparent that a scheduled chemical control for rice production systems becomes uneconomical and that a reduction in energy input without impairing the rice yield, is necessarily improved through the implementation of integrated pest management systems. Nationwide pest forecasting system conducted by the government organization is a unique network of investigation for purpose of making pest control timely in terms of economic thresholds. A wise plant protection is expected to establish pest management systems in appropriate integration of resistant varieties, biological agents, cultural practices and other measures in harmony with minimizing use of chemical applications as a last weapon relying on economic thresholds.

  • PDF

Effects of Urban Greenspace on Microclimate Amelioration, $CO_2$ Sequestration and Eire Obstruction (도시녹지의 미기후개선, $CO_2$흡수 및 화재방지의 효과)

  • ;Yoshiteru Nojima
    • Korean Journal of Plant Resources
    • /
    • v.13 no.3
    • /
    • pp.162-170
    • /
    • 2000
  • This study quantified the effects of urban greenspace on microclimate amelioration and atmospheric $CO_2$ reduction for several residential districts selected in Korea and Japan. The study also explored fire obstruction by urban trees to develop systematic planting guidelines. Transpiration by a Zelkova serrata tree (diameter at breast height: 15 cm) in a day of August equaled cooling effect of about 3 air conditioners running for 12 hours. Average air temperature for the growing season was 0.5$^{\circ}C$ and 1.2$^{\circ}C$ cooler, respectively, in districts with 12% and 22% cover of woody plants than in a district with no vegetation. Annual $CO_2$ uptake and $O_2$ production by woody plants were 3 times greater in a district which was 2 times higher in their cover. Woody plants played, in a district with their 22% cover, an important role through offsetting total $CO_2$ emission from the district by about 3% annually, and through producing 10% of annual $O_2$ requirement by all residents within the district. Appropriate planning strategies of residential greenspace, including species selection, planting layout, greenspace enlargement, and maintenance were suggested to improve microclimate amelioration, air purification, and fire obstruction.

  • PDF

An Impact Assessment on Atmospheric Dispersion of Pesticide using AGDISP Model (AGDISP모델을 이용한 농약의 대기확산 영향평가)

  • Kim, Jeong-Hwan;Koo, Youn-Seo;Lee, Seung-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.547-556
    • /
    • 2013
  • Recently, golf courses have increased over the years because golf became popular leisure sport. Various environmental problems have been then issued by a golf course during constructing and running them. A problem of pesticide, which is serious among various environmental problems, from golf course has harmful effect on surrounding area and makes human suffer from acute and chronic diseases. Pesticides are used for the cost-effective managing of golf course and the amount of pesticides also increases as the number of golf course increase. Since the assessment of pesticides on near-by surrounding has been focused on water and soil media, studies related to atmospheric dispersion have been hardly attempted. The method to assess an impact of pesticide nearby agricultural production by the atmospheric dispersion using AGDISP(AGricultural DISPersal) model was developed and applied to the actual planned golf course located in Hongcheon, Gangwon. For implementing AGDISP, parameters were investigated from the golf course's land use planning map, pesticide spray device, Hong-Cheon weather station and etc. First of all, a kind of pesticide, a form of spraying pesticide, geographical features, weather data, and distance(golf course to plantation) were investigated to understand how to work these parameters in AGDISP. Restricted data(slope angle, droplet size distribution and solar insolation) sensitivity analysis of these parameters to estimate effect of pesticide nearby a plantation and a high relative contribution data of analyzed data was selected for input data. Ethoprophos was chosen as the pesticide used in the golf course and the amounts of pesticide deposition per annual agricultural productions were predicted. The results show that maximum amount of pesticide deposition through atmospheric dispersion was predicted $2.32{\mu}/m^2$ at 96 m where the nearest organic plantation exists. The residues of pesticide were also estimated based on the annul production of the organic and the deposition amount of the pesticide. Consequently, buckwheat, wheat and millet were likely to exceed maximum residue limits for pesticides in foods(MRL) and sorghum, corn and peanut were likely to exceed MRL by organic farming as well.

Development of Wind Farm AEP Prediction Program Considering Directional Wake Effect (방향별 후류를 고려한 풍력발전단지 연간 에너지 생산량 예측 프로그램 개발 및 적용)

  • Yang, Kyoungboo;Cho, Kyungho;Huh, Jongchul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.469-480
    • /
    • 2017
  • For accurate AEP prediction in a wind farm, it is necessary to effectively calculate the wind speed reduction and the power loss due to the wake effect in each wind direction. In this study, a computer program for AEP prediction considering directional wake effect was developed. The results of the developed program were compared with the actual AEP of the wind farm and the calculation result of existing commercial software to confirm the accuracy of prediction. The applied equations are identical with those of commercial software based on existing theories, but there is a difference in the calculation process of the detection of the wake effect area in each wind direction. As a result, the developed program predicted to be less than 1% of difference to the actual capacity factor and showed more than 2% of better results compared with the existing commercial software.

Strategies of development of environmentally friendly industrial sweetpotato on marginal lands by molecular breeding (분자육종을 통한 조건불리지역 친환경 산업용 고구마 개발 전략)

  • Kim, Myoung-Duck;Ahn, Young-Ock;Kim, Yun-Hee;Kim, Cha-Young;Lee, Jeung-Joo;Jeong, Jae-Cheol;Lee, Haeng-Soon;Mok, Il-Gin;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.197-201
    • /
    • 2009
  • The food self-support rate on the basis of cereals in Korea is approximately 27%, which will threaten the national food security. The dramatic increase in population accompanied by rapid industrialization in developing countries has caused imbalances in the supply of food and energy. To cope with these global crises over food and energy supplies as well as environmental problems, it is urgently required to develop new environmentally friendly industrial crop varieties to be grown on marginal lands including desertification areas for sustainable development. Sweetpotato (Ipomoea batatas (L.) Lam.) ranks seventh in annual production among food crops in the world. Its wide adaptability on marginal lands and rich nutritional content provide a high potential for preventing malnutrition and enhancing food security in the developing countries. In addition, sweetpotato can be developed as a bioreactor to produce valuable industrial materials including bio-ethanol, functional feed and antioxidants by molecular breeding. In this respect, we focus on the molecular breeding of sweetpotato with multi-function on marginal lands. The strategies for development of environmentally friendly industrial sweetpotato will be introduced and discussed.

Techno-Economic Study on Non-Capture CO2 Utilization Technology

  • Lee, Ji Hyun;Lee, Dong Woog;Kwak, No-Sang;Lee, Jung Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.109-113
    • /
    • 2016
  • Techno-economic evaluation of Non-Capture $CO_2$ Utilization (NCCU) technology for the production of high-value-added products using greenhouse gas ($CO_2$) was performed. The general scheme of NCCU process is composed of $CO_2$ carbonation and brine electrolysis process. Through a carbonation reaction with sodium hydroxide that is generated from brine electrolysis and $CO_2$ of the flue gas, it is possible to get high-value-added products such as sodium bicarbonate, sodium hydroxide, hydrogen & chloride and also to reduce the $CO_2$ emission simultaneously. For the techno-economic study on NCCU technology, continuous operation of bench-scale facility which could treat $2kgCO_2/day$ was performed. and based on the key performance data evaluated, the economic evaluation analysis targeted on the commercial chemical plant, which could treat 6 tons $CO_2$ per day, was performed using the net present value (NPV) metrics. The results showed that the net profit obtained during the whole plant operation was about 7,890 mKRW (million Korean Won) on NPV metrics and annual $CO_2$ reduction was estimated as about $2,000tCO_2$. Also it was found that the energy consumption of brine electrolysis is one of the key factors which affect the plant operation cost (ex. electricity consumption) and the net profit of the plant. Based on these results, it could be deduced that NCCU technology of this study could be one of the cost-effective $CO_2$ utilization technology options.