• Title/Summary/Keyword: annual effective dose of soil

Search Result 8, Processing Time 0.019 seconds

Cancer Risk Assessment Due to Natural and Fallout Activity in Some Cities of Pakistan

  • Ahad A.;Matiullah Matiullah;Bhatti Ijaz A.;Orfi S.D.
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The measured mean activities of $^{226}Ra,\;^{232}Th,\;^{40}K\;and\;^{137}Cs$ in the soil of Bahawalpur, Bahawalnagar and Rahimyar Khan Bistricts were 32.9, 53.6, 647.4 and 1.8 Bq $kg^{-1}$. The average absorbed dose rate calculated from these activities was 74.3 nGy $h^{-1}$ and the mean annual effective dose rate was found to be 0.46 mSv $y^{-1}$. Absorbed doses to different body organs were derived from annual effective doses using tissue weighting factors. Radiation induced fatal cancer risks were assessed by using ICRP 60 Model. Estimations incurred 184deaths per year due to cancer.

Dose rate conversion factor for soil by the beta-rays and gamma-rays from 238,235U, 232Th and 40K (238,235U, 232Th과 40K의 베타선 및 감마선에 의한 토양의 흡수선량 환산 인자)

  • Kim, Gi-Dong;Eum, Chul-Hun;Bang, Jun-Hwan
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.460-467
    • /
    • 2007
  • Dose rate conversion factor was calculated to estimate the absorbed effective annual doses for soils for the beta-rays and gamma-rays, which were emitted from $^{238,235}U$, $^{232}Th$, and $^{40}K$ isotopes. The most recent data of the emitted energies per decay, half-lifes, and branching ratios, which were obtained from National Nuclear Data Center, were used. When this factor and the effective annual doses for the beta-rays and the gamma-rays of natural radioisotopes were compared with those of Aitken, these of $^{238}U$, $^{232}Th$ and $^{40}K$ are estimated to have good agreements but a large difference is shown in this for $^{235}U$. Through the calculations of effective annual doses by using these factor and the measurements of gamma-ray spectra for soils, which were extracted from prehistoric remains (Mansuri) on Osong, Chungchengbuk-do, The annual effective doses were obtained to be 3.8~5.9 mGy/yr. Also, when these doses including decay elements upper Rn were compared with those on all isotopes, the differences within 9~30 % were obtained. The analysis method of the annual effective doses for the beta-rays and the gamma-rays of the natural isotopes of soils was established by this dose rate conversion factor.

Radionuclide concentrations in agricultural soil and lifetime cancer risk due to gamma radioactivity in district Swabi, KPK, Pakistan

  • Umair Azeem;Hannan Younis;Niamat ullah;Khurram Mehboob;Muhammad Ajaz;Mushtaq Ali;Abdullah Hidayat;Wazir Muhammad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.207-215
    • /
    • 2024
  • This study focuses on measuring the levels of naturally occurring radioactivity in the soil of Swabi, Khyber Pakhtunkhwa, Pakistan, as well as the associated health hazard. Thirty (30) soil samples were collected from various locations and analyzed for 226Ra, 232Th, and 40K radioactivity levels using a High Purity Germanium detector (HPGe) gamma-ray spectrometer with a photo-peak efficiency of approximately 52.3%. The average values obtained for these radionuclides are 35.6 ± 5.7 Bqkg-1, 47 ± 12.5 Bqkg-1, and 877 ± 153 Bqkg-1, respectively. The level of 232Th is slightly higher and 40K is 2.2 times higher than the internationally recommended limit of 30 Bqkg-1 and 400 Bqkg-1, respectively. Various parameters were calculated based on the results obtained, including Radium Equivalent (Raeq), External Hazard (Hex), Absorbed Dose Rate (D), Annual Gonadal Equivalent Dose (AGDE), Annual Effective Dose Rate, and Excess Lifetime Cancer Risk (ELCR), which are 170.3 ± 24 Bqkg-1, 0.46 ± 0.06 Bqkg-1, 81.4 ± 2.04 nGy h-1, 582 ± 78.08 µSvy-1, 99.8 ± 13.5 µSv Gy-1, and 0.349 ± 0.04, respectively. These values are below the limits recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) in 2002. This study highlights the potential radiation threats associated with natural radioactivity levels in the soil of Swabi and provides valuable information for public health and safety.

Distribution of natural radioactivity in soil and date palm-pits using high purity germanium radiation detectors and LB-alpha/beta gas-flow counter in Saudi Arabia

  • Shayeb, Mohammad Abu;Baloch, Muzahir Ali
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1282-1288
    • /
    • 2020
  • In the first study, the Radon emanation and radiological hazards associated with radionuclides in soil samples, collected from 9 various date palm farms located in 3 different districts in Saudi Arabia were determined through a high purity Germanium (HPGe) gamma-ray spectrometer. The estimated average values of Radon emanation coefficient and Radon mass exhalation rate for soil samples were 0.535 ± 0.016 and 50.063 ± 7.901 mBqkg-1h-1, respectively. The annual effective dose of radionuclides in all sampling locations was found to be lower than UNSCEAR's recommended level of 0.07 mSvy-1 for soil in an outdoor environment. In the secondary study, gross α and gross β activities in soil and date palm pits samples were measured by a low background α/β counting system. Average values of gross α and gross β activities in soil and date palm pits samples were 5.761 ± 0.360 Bqkg-1, 38.219 ± 8.619 Bqkg-1 and 0.556 ± 0.142 Bqkg-1, 24.266 ± 1.711 Bqkg-1, respectively.

Natural radioactivity level in fly ash samples and radiological hazard at the landfill area of the coal-fired power plant complex, Vietnam

  • Loan, Truong Thi Hong;Ba, Vu Ngoc;Thien, Bui Ngoc
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1431-1438
    • /
    • 2022
  • In this study, natural radioactivity concentrations and dosimetric values of fly ash samples were evaluated for the landfill area of the coal-fired power plant (CFPP) complex at Binh Thuan, Vietnam. The average activity concentrations of 238U, 226Ra, 232Th and 40K were 93, 77, 92 and 938 Bq kg-1, respectively. The average results for radon dose, indoor external, internal, and total effective dose equivalent (TEDE) were 5.27, 1.22, 0.16, and 6.65 mSv y-1, respectively. The average emanation fraction for fly ash were 0.028. The excess lifetime cancer risks (ELCR) were recorded as 20.30×10-3, 4.26×10-3, 0.62×10-3, and 25.61×10-3 for radon, indoor, outdoor exposures, and total ELCR, respectively. The results indicated that the cover of shielding materials above the landfill area significantly decreased the gamma radiation from the ash and slag in the ascending order: Zeolite < PVC < Soil < Concrete. Total dose of all radionuclides in the landfill site reached its peak at 19.8 years. The obtained data are useful for evaluation of radiation safety when fly ash is used for building material as well as the radiation risk and the overload of the landfill area from operation of these plants for population and workers.

Comparative nitrogen use efficiency of urea and pig slurry for regrowth yield and nutritive value in perennial ryegrass sward

  • Park, Sang Hyun;Lee, Bok Rye;Cho, Won Mo;Kim, Tae Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.514-522
    • /
    • 2017
  • Objective: The study aimed to assess the N use efficiency (NUE) of pig slurry (in comparison with chemical fertilizer) for each regrowth yield and annual herbage production and their nutritive value. Methods: Consecutive field experiments were separately performed using a single application with a full dose of N (200 kg N/ha) in 2014 and by four split applications in 2015 in different sites. The experiment consisted of three treatments: i) control plots that received no additional N, ii) chemical fertilizer-N as urea, and iii) pig-slurry-N with five replicates. Results: The effect of N fertilization on herbage yield, N recovery in herbage, residual inorganic N in soil, and crude protein were significantly positive. When comparing the NUE between the two N sources (urea and pig slurry), pig slurry was significantly less effective for the earlier two regrowth periods, as shown by lower regrowth dry matter (DM) yield, N amount recovered in herbage, and inorganic N availability in soil at the 1st and 2nd cut compared to those of urea-applied plots. However, the effect of split application of the two N sources was significantly positive at the last two regrowth periods (at the 3rd and 4th cut). The two N sources and/or split application had little or no influence on neutral detergent fiber (NDF) content, acid detergent fiber (ADF) content, and in vitro DM digestibility, whereas cutting date was a large source of variation for these variables, resulting in a significant increase in in vitro DM digestibility for the last two regrowth periods when an increase in NDF and ADF content occurred. Split application of N reduced the N loss via nitrate leaching by 36% on average for the two N sources compared to a single application. Conclusion: The pig slurry-N was utilized as efficiently as urea-N for annual herbage yield, with a significant increase in NUE especially for the latter regrowth periods.

Radiometric examination of fertilizers and assessment of their health hazards, commonly used in Pakistan

  • Hannan Younis;Sumbilah Shafique;Zahida Ehsan;Aleena Ishfaq;Khurram Mehboob;Muhammad Ajaz;Abdullah Hidayat;Wazir Muhammad
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2447-2453
    • /
    • 2023
  • The radioactivity concentrations of Naturally Occurring Radioactive Materials (NORM) i.e., 226Ra, 232Th, and 4K in various chemical fertilizers being used in the agricultural soil of Pakistan were determined utilizing gamma spectrometry by employing a High Purity Germanium (HPGe) detector. The radioactivity concentrations of 226Ra, 232Th, and 4K extended from 2.58 ± 0.8-265.7 ± 8.8 Bq kg-1, 1.53 ± 0.14-76.6 ± 1.07 Bq kg-1 and 36.5 ± 1.34-15606.7 ± 30.2 Bq kg-1 respectively. The radiological hazard parameters such as internal and external indices and annual effective dose rates were calculated, while excessive lifetime cancer risk factors for the indoor and outdoor areas were found in the range from 0.3×10-3 to 10.723×10-3 and 0.03×10-3 to 2.7948×10-3 of most fertilizers, however, some values were slightly higher than the UNSCEAR (The United Nations Scientific Committee on the Effects of Atomic Radiation) recommended values for potash-containing fertilizers such as MOP (Muriate of Potash).

Evaluation of Indoor Radon Levels in a Hospital Underground Space and Internal Exposure (의료기관 지하시설의 라돈가스 측정과 내부피폭 조사)

  • Song, Jea-Ho;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.231-235
    • /
    • 2011
  • Radium is rock or soil of crust or uranium of building materials and thorium after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like mine or basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. Radium sheath of medical institution treat person's life is possible big danger to professional regarding radioactivity who has much amount exposed radioactivity and weaker immune patient. so we do this test. Using measuring instrument at test is real time radium measuring instrument, Professional Continuous Radon monitor, and measuring places are basement first floor and second floor of two hospitals and measure from 10 a.m to 3 p.m. Measurement result of Professional Continuous Radon monitor is minimum 14.8 Bq/$m^3$ to maximum 70.3 Bq/$m^3$ and show domestic baseline below 148 Bq/$m^3$, effective dose-rate is minimum 0.296 mSv to maximum 1.406 mSv that show 2.4 mSv, 10~58.3% level, exposed radiation amount from nature radiation one year.