• Title/Summary/Keyword: ankle joint

Search Result 1,074, Processing Time 0.029 seconds

The Effect of Task Gait Exercise Combined with Self-observation Training on Leg Muscle Activity and Gait in Stroke Patients (자기관찰훈련을 병행한 과제보행운동이 뇌졸중 환자의 다리 근활성도와 보행에 미치는 영향)

  • Kang, Jeong-Il;Baek, Seung-Yun;Jeong, Dae-Keun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.3
    • /
    • pp.59-67
    • /
    • 2022
  • PURPOSE: This study examined the effectiveness of task gait exercise combined with self-observation training to provide basic clinical data by analyzing the factors that task gait exercise combined with self-observation training has on the leg muscle activity and gait improvement in stroke patients. METHODS: The subjects were assigned randomly to experimental Group I, which mediated task gait exercise combined with self-observation training, and experimental Group II, which mediated task-walking movement. They received 30-minute interventions three times a week for four weeks. The leg muscle activity and 10 m walking test (10MWT) were conducted as pre-intervention tests, and they underwent a post-test four weeks later in the same manner as the pre-test. RESULTS: A statistically significant difference was observed in all muscles and 10MWT (p < .01) in experimental group I (p < .05), while there were significant differences only in the rectus femoris, biceps femoris, and 10MWT (p < .05). In a comparison of the changes between groups, there were statistically significant differences only in the tibialis anterior, soleus muscle, and 10MWT (p < .05). CONCLUSION: Self-observation training in experimental group I was effective in increasing the leg muscle activity and improving walking speed by discovering and correcting incorrect movements and following a normal gait pattern using the ankle joint. Therefore, the task gait exercise combined with self-observation training should be introduced and actively utilized for the rapid social recovery of stroke patients.

The Effect of Gait Exercise Using a Mirror on Gait for Normal Adult in Virtual Reality Environment: Gait Characteristics Analysis (가상현실환경에서 정상성인의 거울보행이 보행특성에 미치는 영향)

  • Lee, Jae-Ho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.10 no.3
    • /
    • pp.233-246
    • /
    • 2022
  • Purpose : The study aims to determine the effects of virtual and non-virtual realities in a normal person's mirror walk on gait characteristics. Methods : Twenty male adults (Age: 27.8 ± 5.8 years) participated in the study. Reflection markers were attached to the subjects for motion analysis, and they walked in virtual reality environments with mirrors by wearing goggles that showed them the virtual environments. After walking in virtual environments, the subjects walked in non-virtual environments with mirrors a certain distance away after taking a 5 min break. To prevent the order effect caused by the experiential difference of gait order, the subjects were randomly classified into groups of 10 and the order was differentiated. During each walk, an infrared camera was used to detect motion and the marker positions were saved in real time. Results : Comparison between the virtual and non-virtual reality mirror walks showed that the movable range of the leg joints (ankle, knee, and hip joints), body joints (sacroiliac and atlantoaxial joints), and arm joints (shoulder and wrist joints) significantly differed. Temporal characteristics showed that compared to non-virtual gaits, the virtual gaits were slower and the cycle time and double limb support time of virtual gaits were longer. Furthermore, spacial characteristics showed that compared to non-virtual gaits, virtual gaits had shorter steps and stride lengths and longer stride width and horizontally longer center of movement. Conclusion : The reduction in the joint movement in virtual reality compared to that in non-virtual reality is due to adverse effects on balance and efficiency during walking. Moreover, the spatiotemporal characteristics change based on the gait mechanisms for balance, exhibiting that virtual walks are more demanding than non-virtual walks. However, note that the subject group is a normal group with no abnormalities in gait and balance and it is unclear whether the decrease in performance is due to the environment or fear. Therefore, the effects of the subject group's improvement and fear on the results need to be analyzed in future studies.

Effects of Limited Dorsiflexion Range of Motion on Movement Strategies during Landing (발등굽힘 관절가동범위 제한이 착지 시 움직임 전략에 미치는 영향)

  • Inje Lee;Donggun Kim;Hyeondeukje Kim;Hyunsol Shin;Jiwon Lee;Yujin Jang;Myeongwoo Pi
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.4
    • /
    • pp.147-154
    • /
    • 2023
  • Objective: This study aimed 1) to compare the Landing Error Scoring System (LESS) score and movement patterns during landing of the lesser dorsiflexion range of motion (LDFROM) group to that with the greater dorsiflexion range of motion group, and 2) to identify the correlation between the weight-bearing dorsiflexion range of motion (WBDF ROM), LESS score, and movement patterns during landing. Method: Fifty health adults participated in this study. WBDF ROM was measured using the weight bearing lunge test while movement patterns during landing was assessed using the LESS. The joint angles of the ankle, knee and hip joints during landing were analyzed using the 2D video analysis. After mean value of WBDF ROM was calculated, participants were divided into two groups (GDFROM and LDFROM) based on the mean value. The Mann-Whiteny 𝒰 test was used to identify differences in movement strategies during landing between two groups and the Pearson's correlation analysis was performed to determine relationships between WBDF ROM and movement strategies. Results: The LDFROM group showed the poorer LESS score and stiffer landing kinematics during landing compared to the GDFROM group (p<0.05). In addition, DFROM was significantly related to the LESS score and landing kinematics (p<0.05) except for total hip excursion (p=0.228). Conclusion: Our main findings showed that the LDFROM group had poorer landing quality and stiffer landing movements compared to the GDFROM group. In addition, increase of WBDF ROM significantly improved landing quality and soft-landing movements. To reduce shock during landing such as ground reaction forces, individuals need to better utilize WBDF ROM and lower extremity movements based on our findings. Therefore, intervention programs for safer landings should include exercises that increase WBDF ROM and utilize eccentric contraction.

Effects of Cooling on Repeated Muscle Contractions and Tendon Structures in Human (냉각이 반복된 근수축과 사람의 건 구조에 미치는 영향)

  • Chae, Su-Dong;Jung, Myeong-Soo;Horii, Akira
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.6
    • /
    • pp.1-11
    • /
    • 2006
  • Purpose: This study compared the effects of non-cold and cold conditions on the viscoelastic properties of tendon structures in vivo. Methods: Seven male subjects perfomed plantar flesion exercise with maximal isokinetic voluntary contraction, which consisted of muscle contraction for 6 see and relaxation for 60 secs, 10 times for 1 set, Totally 10 sets were repeated. Before and after each task, the elongation of the tendon and aponeurosis of the medial gastrocnemius muscle (MG) was directly measured by ultrasonography. (The relationship between the estimated tendon force and tendon elongation.) Tendon cross-sectional area and ankle joint moment arm were obtained from magnetic resonance imaging (MRI). The tendon force was calculated from the joint moments and the tendon moment arm and stress was obtained by dividing force by cross-sectional areas (CSA). The strain was measured from the displacements normalized to tendon length. Results: After cooling, the tendon force was larger in cold than non-cold. The value of the tendon stiffness of MVC were significantly higher under the cold condition than under the non-cold condition. The maximal strain and stress of $7.4{\pm}0.7%$ and $36.4{\pm}1.8$ MPa in non-cold and $7.8{\pm}8.5%,\;31.8{\pm}1.1$ MPa in cold (P<0.05). Conclusion: This study shows for the first time that the muscle endurance in cooling increases the stiffness and Young's modulus of human tendons. The improvement in muscle endurance with cooling was directly related to muscle and tendon.

  • PDF

Introduction of Hindfoot Coronal Alignment View (후족부 관상면 배열 영상에 대한 고안)

  • Moon, Il-Bong;Jeon, Ju-Seob;Yoon, Kang-Cheol;Choi, Nam-Kil;Kim, Seung-Kook
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.225-228
    • /
    • 2006
  • Purpose: Accurate clinical evaluation of the alignment of the calcaneus relative to the tibia in the coronal plane is essential in the evaluation and treatment of hindfoot pathologic condition. Previously described standard anteroposterior, lateral, and oblique radiographic methods of the foot or ankle do not demonstrate alignment of the tibia relation to the calcaneus in the coronal plane. The purpose of this study was to introduce hindfoot coronal alignment view. Material : 1) Both feet were imaged simultaneously on an elevated, radiolucent foot stand equipment. 2) Both feet stood on a radiolucent platform with equal weight on both feet. 3) Both feet are located foot axis longitudinal perpendicular to the platform. 4) Silhouette tracing around both feet are made, and line is then drawn to bisect the silhouette of the second toe and the outline of the heel. 5) The x-ray beam is angled down approximately $15^{\circ} to $20^{\circ} Result : 1) This image described tibial axis and medial, lateral tuberosity of calcaneus. 2) Calcaneus do not rotated. 3) The view is showed by talotibial joint space. Conclusion: Although computed tomographic and magnetic resonance imaging techniques are capable of demonstrating coronal hindfoot alignment, they lack usefulness in most clinical situations because the foot is imaged in a non-weight bearing position. But hindfoot coronal alignment view is obtained for evaluating position changing of inversion, eversion of the hindfoot and varus, valgus deformity of calcaneus.

  • PDF

Comparison of Biomechanical Characteristics for the Skill Level in Cycle Pedaling

  • Lee, Geun-Hyuk;Kim, Jai-Jeong;Kang, Sung-Sun;Hong, Ah-Reum;So, Jae-Moo
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • Objective: This study aimed to compare biomechanical data between elite and beginner cyclists during cycle pedaling by performing a comparative analysis and to provide quantitative data for both pedaling performance enhancement and injury prevention. Methods: The subjects of this study included 5 elite cyclists (age: $18{\pm}0years$, body mass: $64.8{\pm}9.52kg$, height: $173.0{\pm}4.80cm$) and 5 amateur cyclists (age: $20{\pm}0years$, mass: $66.6{\pm}2.36kg$, height: $175.6{\pm}1.95cm$). The subjects pedaled on a stationary bicycle mounted on rollers of the same gear (front: 50 T and rear: 17 T = 2.94) and cadence of 90. The saddle height was adjusted to fit the body of each subject, and all the subjects wore shoes with cleats. In order to obtain kinematic data, 4 cameras (GR-HD1KR, JVC, Japan) were installed and set at 60 frames/sec. An electromyography (EMG) system (Telemyo 2400T, Noraxon, USA) was used to measure muscle activation. Eight sets of data from both the left and right lower extremities were obtained from 4 muscles (vastus medialis oblique [VMO], vastus lateralis oblique [VLO], and semitendinosus [Semitend], and lateral gastrocnemius [Gastro]) bilaterally by using a sampling frequency of 1,500 Hz. Five sets of events ($0^{\circ}$, $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, and $360^{\circ}$) and 4 phases (P1, P2, P3, and P4) were set up for the data analysis. Imaging data were analyzed for kinematic factors by using the Kwon3D XP computer software (Visol, Korea). MyoResearch XP Master Edition (Noraxon) was used for filtering and processing EMG signals. Results: The angular velocity at $360^{\circ}$ from the feet was higher in the amateur cyclists, but accelerations at $90^{\circ}$ and $180^{\circ}$ were higher in the elite cyclists. The amateur cyclists had greater joint angles at $270^{\circ}$ from the ankle and wider knee joint distance at $0^{\circ}$, $180^{\circ}$, and $360^{\circ}$ than the elite cyclists. The EMG measurements showed significant differences between P2 and P4 from both the right VLO and Semitend. Conclusion: This study showed that lower body movements appeared to be different according to the level of cycle pedaling experience. This finding may be used to improve pedaling performance and prevent injuries among cyclists.

Benign Tumors of the Talar Body (거골 체부에 발생한 양성 종양)

  • Suh, Sung-Wook;Lee, Sang-Hoon;Kim, Han-Soo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.8 no.3
    • /
    • pp.76-82
    • /
    • 2002
  • Purpose: Benign bone tumor of the talar body have rarely been evaluated according to the therapeutic methods because of the scarcity of their incidence. Here, we report our experience of 8 cases who were treated by using of posterior approach and curettage through the posterior process of the talus. Materials and Methods: Between February 1986 and October 2001, we experienced 8 cases of benign bone tumor occurring in the talar body. They included two osteoid osteomas, two giant cell tumors, one capillary hemangioma, one chondroblastoma, one simple bone cyst, and one osteochondroma. Their mean age was 22.1 years (ranging from 10 to 41 years). Mean follow-up period was 7.7 years (ranging from 1 to 16 years). All patients were treated by using of posterior approach. Two osteoid osteomas and one osteochondroma were treated by excision of tumors. Other cases were treated with curettage through the cortical window on the posterior process of the talus. Results: There was no recurrence during the follow-up period. one infection occurred. Except this case, all patients had no pain in weight-bearing, and complete range of movement at the ankle joint was reserved in each case. Conclusion: In this study, we suppose that posterior approach to the talar body may be a safe method with minimal damage of normal tissues and sufficient of curettage is capable through the cortical window on the posterior process of the talus.

  • PDF

Implementation of Gait Analysis System Based on Inertial Sensors (관성센서 기반 보행 분석 시스템 구현)

  • Cho, J.S.;Kang, S.I.;Lee, K.H.;Jang, S.H.;Kim, I.Y.;Lee, J.S.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In this paper, we present an inertial sensor-based gait analysis system to measure and analyze lower-limb movements. We developed an integral AHRS(Attitude Heading Reference System) using a combination of rate gyroscope, accelerometer and magnetometer sensor signals. Several AHRS modules mounted on segments of the patient's body provide the quaternions representing the patient segments's orientation in space. And a method is also proposed for calculating three-dimensional inter-segment joint angle which is an important bio-mechanical measure for a variety of applications related to rehabilitation. To evaluate the performance of our AHRS module, the Vicon motion capture system, which offers millimeter resolution of 3D spatial displacements and orientations, is used as a reference. The evaluation resulted in a RMSE(Root Mean Square Error) of 1.08 and 1.72 degree in yaw and pitch angle. In order to evaluate the performance of our the gait analysis system, we compared the joint angle for the hip, knee and ankle with those provided by Vicon system. The result shows that our system will provide an in-depth insight into the effectiveness, appropriate level of care, and feedback of the rehabilitation process by performing real-time limb or gait analysis during the post-stroke recovery.

  • PDF

Kinetic analysis of the lower limb in visual handicap children (시각장애 아동의 보행 시 하지의 운동역학적 분석)

  • Yi, Jae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3952-3958
    • /
    • 2011
  • This study was to investigate the difference in gait pattern between the visual handicap children and non handicap children in by analyze the biomechanical variation and pattern of lower limb. Therefore, we have made a choice of four visually handicapped children and two subjects, who had no medical disorder for the last six months. In order to collect the gait pattern data of each group, we have used six infrared cameras and one forceplate Also, we have used QTM program to collect the raw data and Visual3D program to calculate kinetic variable. The results were as follows, An/Posterior GRF of breaking phase and propulsion phase in stance phase was lower in visual handicapped children than that of non handicapped children and breaking phase was longer than propulsion phase. extension moment at the ankle was quite lower than general gait pattern and there was little variation at the knee joint which makes the results differ from the general gait pattern. However, hip joint moment was relatively higher than that of other joints. Mechanical variation of lower limb, in case of foot and shank, showed similar results. but generated very low mechanical energy. In thigh, the form of mechanical energy generation was slightly different in each group but generated more mechanical energy than other segments.

Effect of Tiger Step on Lower Extremities during Uphill Walking (오르막보행 시 타이거스텝 하지 움직임에 미치는 영향)

  • Kang, Jihyuk;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2022
  • Objective: The aim of this study was to investigate the effect Tiger-step walking on the movement of the lower extremities during walking. Method: Twenty healthy male adults who had no experience of musculoskeletal injuries on lower extremities in the last six months (age: 26.85 ± 3.28 yrs, height: 174.6 ± 3.72 cm, weight: 73.65 ± 7.48 kg) participated in this study. In this study, 7-segments whole-body model (pelvis, both side of thigh, shank and foot) was used and 29 reflective markers and cluster were attached to the body to identify the segments during the gait. A 3-dimensional motion analysis with 8 infrared cameras and 7 channeled EMG was performed to find the effect of tigerstep on uphill walking. To verify the tigerstep effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at α=.05. Results: Firstly, Both Tiger-steps showed a significant increase in stance time and stride length compared with normal walking (p<.05), while both Tiger-steps shown significantly reduced cadence compared to normal walking (p<.05). Secondly, both Tiger-steps revealed significantly increased in hip and ankle joint range of motion compared with normal walking at all planes (p<.05). On the other hand, both Tiger-steps showed significantly increased knee joint range of motion compared with normal walking at the frontal and transverse planes (p<.05). Lastly, Gluteus maximus, biceps femoris, medial gastrocnemius, tibialis anterior of both tiger-step revealed significantly increased muscle activation compared with normal walking in gait cycle and stance phase (p<.05). On the other hand, in swing phase, the muscle activity of the vastus medialis, biceps femoris, tibialis anterior of both tiger-step significantly increased compared with those of normal walking (p <.05). Conclusion: As a result of this study, Tiger step revealed increased in 3d range of motion of lower extremity joints as well as the muscle activities associated with range of motion. These findings were evaluated as an increase in stride length, which is essential for efficient walking. Therefore, the finding of this study prove the effectiveness of the tiger step when walking uphill, and it is thought that it will help develop a more efficient tiger step in the future, which has not been scientifically proven.