• Title/Summary/Keyword: anisotropy energy

Search Result 243, Processing Time 0.029 seconds

Size Distribution and Temperature Dependence of Magnetic Anisotropy Constant in Ferrite Nanoparticles

  • Yoon, Sunghyun
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.11a
    • /
    • pp.104-105
    • /
    • 2012
  • The temperature dependence of the effective magnetic anisotropy constant K(T) of ferrite nanoparticles is obtained based on the measurements of SQUID magnetometry. For this end, a very simple but intuitive and direct method for determining the temperature dependence of anisotropy constant K(T) in nanoparticles is introduced in this study. The anisotropy constant at a given temperature is determined by associating the particle size distribution f(r) with the anisotropy energy barrier distribution $f_A(T)$. In order to estimate the particle size distribution f(r), the first quadrant part of the hysteresis loop is fitted to the classical Langevin function weight-averaged with the log?normal distribution, slightly modified from the original Chantrell's distribution function. In order to get an anisotropy energy barrier distribution $f_A(T)$, the temperature dependence of magnetization decay $M_{TD}$ of the sample is measured. For this measurement, the sample is cooled from room temperature to 5 K in a magnetic field of 100 G. Then the applied field is turned off and the remanent magnetization is measured on stepwise increasing the temperature. And the energy barrier distribution $f_A(T)$ is obtained by differentiating the magnetization decay curve at any temperature. It decreases with increasing temperature and finally vanishes when all the particles in the sample are unblocked. As a next step, a relation between r and $T_B$ is determined from the particle size distribution f(r) and the anisotropy energy barrier distribution $f_A(T)$. Under the simple assumption that the superparamagnetic fraction of cumulative area in particle size distribution at a temperature is equal to the fraction of anisotropy energy barrier overcome at that temperature in the anisotropy energy barrier distribution, we can get a relation between r and $T_B$, from which the temperature dependence of the magnetic anisotropy constant was determined, as is represented in the inset of Fig. 1. Substituting the values of r and $T_B$ into the $N{\acute{e}}el$-Arrhenius equation with the attempt time fixed to $10^{-9}s$ and measuring time being 100 s which is suitable for conventional magnetic measurement, the anisotropy constant K(T) is estimated as a function of temperature (Fig. 1). As an example, the resultant effective magnetic anisotropy constant K(T) of manganese ferrite decreases with increasing temperature from $8.5{\times}10^4J/m^3$ at 5 K to $0.35{\times}10^4J/m^3$ at 125 K. The reported value for K in the literatures is $0.25{\times}10^4J/m^3$. The anisotropy constant at low temperature region is far more than one order of magnitude larger than that at 125 K, indicative of the effects of inter?particle interaction, which is more pronounced for smaller particles.

  • PDF

Effect of Surface Energy Anisotropy on the Equilibrium Shape of Sapphire Crystal

  • Choi, Jung-Hae
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.907-911
    • /
    • 2002
  • Using the two-dimensional Wulff plot, the equilibrium shape of a sapphire crystal was investigated as a function of surface energy anisotropy. Depending on the relative values of surface energy for various facet planes, the projected shape of equilibrium sapphire was determined to be rectangle, parallelogram, hexagon or octagon. The results are compared with the experimentally observed shapes of internal cavities of submicron range in sapphire single crystals.

SWR as Tool for Determination of the Surface Magnetic Anisotropy Energy Constant

  • Maksymowicz, L.J.;Lubecka, M.;Jablonski, R.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.105-111
    • /
    • 1998
  • The low energy excitations of spin waves (SWR) in thin films can be used for determination of the surface anisotropy constant and the nonhomogeneities of magnetization in the close-to-surface layer. The dispersion relation in SWR is sensitive on the geometry of experiment. We report on temperature dependence of surface magnetic anisotropy energy constant in magnetic semiconductor thin films of$ CdCr_{2-2x}In_{2x}Se_4$ at spin glass state. Samples were deposited by rf sputtering technique on Corning glass substrate in controlled temperature conditions. Coexistence of the infinite ferromagnetic network (IFN) and finite spin slusters (FSC) in spin glass state (SG) is know phenomena. Some behavior typical for long range magnetic ordering is expected in samples at SG state. The spin wave resonance experiment (microwave spectrometer at X-band) with excited surface modes was applied to describe the energy state of surface spins. We determined the surface magnetic anisotropy energy constant versus temperature using the surface inhomogeneities model of magnetic thin films. It was found that two components contribute to the surface magnetic anisotropy energy. One originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the originates from the exchange interaction term due to the lack of translation symmetry for surface spin as well as from the stray field of the surface roughness. The second one comes from the demagnetizing field of close-to surface layer with grad M. Both term linearly decrease when temperature is increased from 5 to 123 K, but dominant contribution is from the first component.

  • PDF

A Statistical Test of the Relationship Between Chorus Wave Activation and Anisotropy of Electron Phase Space Density

  • Lee, Dong-Hee;Lee, Dae-Young;Shin, Dae-Kyu;Kim, Jin-Hee;Cho, Jung-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.295-301
    • /
    • 2014
  • Whistler mode chorus wave is considered to play a critical role in accelerating and precipitating the electrons in the outer radiation belt. In this paper we test a conventional scenario of triggering chorus using THEMIS satellite observations of waves and particles. Specifically, we test if the chorus onset is consistent with development of anisotropy in the electron phase space density (PSD). After analyzing electron PSD for 73 chorus events, we find that, for ~80 % of them, their onsets are indeed associated with development of the positive anisotropy in PSD where the pitch angle distribution of electron velocity peaks at 90 degrees. This PSD anisotropy is prominent mainly at the electron energy range of ${\leq}$ ~20 keV. Interestingly, we further find that there is sometimes a time delay among energies in the increases of the anisotropy: A development of the positive anisotropy occurs earlier by several minutes for lower energy than for an adjacent higher energy.

The Magnetic Structure and Magnetic Anisotropy Energy Calculations for Transition Metal Mono-oxide Clusters (전이금속산화물 클러스터의 자기구조 및 자기이방성에너지 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • We have studied magnetic structure and magnetic anisotropy energy of cubic transition metal mono-oxide cluster FeO and MnO using OpenMX method based on density functional method. The calculation results show that the antiferromagnetic spin arrangement has the lowest energy for FeO and MnO due to the superexchange interactions. The magnetic anisotropy is only found for antiferromagnetically ordered FeO cluster, since occupied electron of 3d down-spin level induces the spin-orbit couplings with <111> directed angular momentum.

Magnetic Anisotropy of Oxygen-deficient Fe/MgO(001) System: An ab Initio Study

  • Choe, Hui-Chae;Jeong, Yong-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.61-61
    • /
    • 2011
  • Using ab initio calculations, we study the MgO(001) and Fe/MgO(001) surface phases and the effects of interface structure on the Fe/MgO magnetic anisotropy. The surface phase diagrams of MgO(001) and Fe/MgO(001) show that the most stable surface structures are either defect-free surface or the surfaces with oxygen vacancies in c($2{\times}1$) periodicity for the systems. By the formations of the oxygen vacancy rows on MgO(001) surface, the in-plane magnetic anisotropy energy of Fe overlayer is reduced while the perpendicular magnetic anisotropy energy is increased from 0.1 to 0.5 meV per Fe atom.

  • PDF

Origin of the Initial Permeabiliy of Ni0.8-xZn0.2CoxFe2O4+δ Ferrite (Ni0.8-xZn0.2CoxFe2O4+δ조성 페라이트의 투자율 변화 기구)

  • 안용운;김종령;오영우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The cause for the variation of the initial permeability according to the Co substitution of Ni-Zn ferrite used in the LC resonance filter for the power line communication is studied. The initial permeability decreases as the quantity of Co diminishes, and the saturation magnetization increases as the quantity increases. Because the sintering density and the microstructure of ferrite show little change, the variation of the initial permeability can't be explained by the density, microstructure nor the saturation magnetization factor. The magnetocrystalline anisotropy increases, similar with the saturation magnetization, as the quantity of Co increases. The increase of magnetocrystalline anisotropy value makes the domain wall energy grow, which leads to the decrease of the initial permeability, because there's linear law between the magnetocrystalline anisotropy and the domain wall energy. The resonance frequency to Co substitution moved to high frequency band, due to the close relationship with domain wall energy, Initial permeability decreaed a little with an increase of Co contents, but resonace frequency moved to high frequency band. as a result of that, when Co was added 0.05 mol, initial permeability and resonace frequency was 75 and 25 MHz respectively.

A Semi-graphical Analysis on the Sublattice Anisotropy of a Two Sublattice System with Uniaxial Anisotropy: Application to Pr2Fe14B

  • Kim, Y.B.;Jin-Han-Min
    • Journal of Magnetics
    • /
    • v.3 no.3
    • /
    • pp.74-77
    • /
    • 1998
  • A method to analyze the anisotropy constants of a two sublattice system with uniaxial anisotropy has been investigated by extending the Sucksmith and Thompson's method to higher order anisotropy terms. Using the method, a set of anisotropy constants for Pr-sublattice of $Pr_2Fe_{14}B at 4.2K has been obtained as K_{1Pr}=5210 J/kg, K_{2Pr}=-7200 J/kg, K_{3Pr}=-770 J/kg, K_{4Pr}=4940 J/kg and K_{SPr}=700 J/kg for N_{PrFe}=2.2 T/Am^2kg^{-1}.$ The magnetization calculated by an energy minimum method by using the sublattice anisotropy constants well reproduced the experimental results and satisfied the simulation assumptions.

  • PDF

Study on Basic Magnetic Characteristics in New Magnetic Materials(2) - Magnetic Properties of Amorphous $Fe_{80}B_{15}Si_{5}$ alloy Measures with Pulse Method (새 자성재료의 기초자기특성 연구(2) - 펄스측정법에 의한 비정질 $Fe_{80}B_{15}Si_{5}$ 합금의 자기특성)

  • 이용호;신용돌;김인수;이연숙;노태환;강일구
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.42-48
    • /
    • 1991
  • The basic soft magnetic characteristics of a typical Fe based amorphous $Fe_{80}B_{15}Si_{5}$ alloy were measured with pulse metheod. Quantitative relations between magnetostriction, anisotropy energy, reluctivity were investigated. The relative contribution factor of magnetostrictive and uniaxial anisotropy energy to the reluctivity were calculated. The internal stress and induced anisotropy were estimated. A tension applied to the long axis of the sample greatly enhanced induced anisotropy.

  • PDF