Browse > Article
http://dx.doi.org/10.5140/JASS.2014.31.4.295

A Statistical Test of the Relationship Between Chorus Wave Activation and Anisotropy of Electron Phase Space Density  

Lee, Dong-Hee (Department of Astronomy and Space Science, Chungbuk National University)
Lee, Dae-Young (Department of Astronomy and Space Science, Chungbuk National University)
Shin, Dae-Kyu (Department of Astronomy and Space Science, Chungbuk National University)
Kim, Jin-Hee (Department of Astronomy and Space Science, Chungbuk National University)
Cho, Jung-Hee (Department of Astronomy and Space Science, Chungbuk National University)
Publication Information
Journal of Astronomy and Space Sciences / v.31, no.4, 2014 , pp. 295-301 More about this Journal
Abstract
Whistler mode chorus wave is considered to play a critical role in accelerating and precipitating the electrons in the outer radiation belt. In this paper we test a conventional scenario of triggering chorus using THEMIS satellite observations of waves and particles. Specifically, we test if the chorus onset is consistent with development of anisotropy in the electron phase space density (PSD). After analyzing electron PSD for 73 chorus events, we find that, for ~80 % of them, their onsets are indeed associated with development of the positive anisotropy in PSD where the pitch angle distribution of electron velocity peaks at 90 degrees. This PSD anisotropy is prominent mainly at the electron energy range of ${\leq}$ ~20 keV. Interestingly, we further find that there is sometimes a time delay among energies in the increases of the anisotropy: A development of the positive anisotropy occurs earlier by several minutes for lower energy than for an adjacent higher energy.
Keywords
whistler chorus; radiation belt electrons; wave-particle interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Roux A, Le Contel O, Coillot C, Bouabdellah A, de la Porte B, et al., The search coil magnetometer for THEMIS, Space Sci. Rev. 141, 265-275 (2008). http://dx.doi.org/10.1007/s11214-008-9455-8   DOI
2 Santolik O, Gurnett DA, Pickett JS, Parrot M, Cornilleau-Wehrlin N, Spatio-temporal structure of storm-time chorus, JGR 108, 1278 (2003). http://dx.doi.org/10.1029/2002JA009791   DOI
3 Shprits YY, Subbotin D, Ni B, Evolution of electron fluxes in the outer radiation belt computed with the VERB code, JGR 114, A11209 (2009). http://dx.doi.org/10.1029/2008JA013784   DOI
4 Smith AJ, Freeman MP, Wickett MG, Cox BD, On the relationship between the magnetic and VLF signatures of the substorm expansion phase, JGR 104, 12351-12360 (1999). http://dx.doi.org/10.1029/1998JA900184   DOI
5 Summers D, Ni B, Meredith NP, Timescales for radiation belt electron acceleration and loss due to resonant waveparticle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves, JGR 112, A04207 (2007). http://dx.doi.org/10.1029/2006JA011993   DOI
6 Tsurutani BT, Smith EJ, Two types of magnetospheric ELF chorus and their substorm dependences, JGR 82, 5112-5128 (1977). http://dx.doi.org/10.1029/JA082i032p05112   DOI
7 Turner DL, Shprits Y, Hartinger M, Angelopoulos V, Explaining sudden losses of outer radiation belt electrons during geomagnetic storms, Nature Physics 8, 208-212 (2012). http://dx.doi.org/10.1038/nphys2185   DOI
8 Angelopoulos V, The THEMIS Mission, SSRv 141, 5-34 (2008). http://dx.doi.org/10.1007/s11214-008-9336-1   DOI
9 Burtis WJ, Helliwell RA, Banded chorus: A new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3, JGR 74, 3002-3010 (1969). http://dx.doi.org/10.1029/JA074i011p03002   DOI
10 Cully CM, Ergun RE, Stevens K, Nammari A, Westfall J, The THEMIS Digital Fields Board, Space Sci. Rev. 141, 343-355 (2008). http://dx.doi.org/10.1007/s11214-008-9417-1   DOI
11 Golden DI, Spasojevic M, Li W, Nishimura Y, Statistical modeling of in situ hiss amplitudes using ground measurements, JGR 117, A05218 (2012). http://dx.doi.org/10.1029/2011JA017376   DOI
12 Hayakawa M, Muto H, Shimakura S, Hattori K, Parrot M, et al., The wave normal direction of chorus emissions in the outer magnetosphere, Proc. of NIPR SYMP. Upper Atmos. Phys. 2, 62-73 (1989).
13 Horne RB, Thorne RM, Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus, GRL 30, 1527 (2003). http://dx.doi.org/10.1029/2003GL016973   DOI
14 Hwang JA, Lee DY, Lyons LR, Smith AJ, Zou S, et al., Statistical significance of association between whistler-mode chorus enhancements and enhanced convection periods during high-speed streams, JGR 112, A09213 (2007). http://dx.doi.org/10.1029/2007JA012388   DOI
15 Hwang J, Lee DY, Kim KC, Shin DK, Kim JH, et al., Significant loss of energetic electrons at the heart of the outer radiation belt during weak magnetic storms, JGR 118, 4221-4236 (2013). http://dx.doi.org/10.1002/jgra.50410   DOI   ScienceOn
16 Katoh Y, Omura Y, Computer simulation of chorus wave generation in the Earth's inner magnetosphere, GRL 34, L03102 (2007). http://dx.doi.org/10.1029/2006GL028594   DOI
17 Koons HC, Roeder JL, A survey of equatorial magnetospheric wave activity between 5 and 8 $R_E$, Planer. Space Sci., 38 (10), 1335-1341, (1990). http://dx.doi.org/10.1016/0032-0633(90)90136-E   DOI
18 Kim KC, Lee DY, Kim HJ, Lyons LR, Lee ES, et al., Numerical calculations of relativistic electron drift loss effect, JGR 113, A09212 (2008). http://dx.doi.org/10.1029/2007JA013011   DOI
19 Kim KC, Lee DY, Kim HJ, Lee ES, Choi CR, Numerical estimates of drift loss and Dst effect for outer radiation belt relativistic electrons with arbitrary pitch angle, JGR 115, A03208 (2010). http://dx.doi.org/10.1029/2009JA014523   DOI
20 Kim KC, Shprits Y, Subbotin D, Ni B, Understanding the dynamic evolution of the relativistic electron slot region including radial and pitch angle diffusion, JGR 116, A10214 (2011). http://dx.doi.org/10.1029/2011JA016684   DOI
21 Lam MM, Horne RB, Meredith NP, Glauert SA, Moffat-Griffin T, et al., Origin of energetic electron precipitation > 30 keV into the atmosphere, JGR 115, A00F08 (2010). http://dx.doi.org/10.1029/2009JA014619   DOI
22 Li W, Thorne RM, Nishimura Y, Bortnik J, Angelopoulos V, et al., THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation, JGR 115, A00F11 (2010). http://dx.doi.org/10.1029/2009JA014845   DOI
23 Li X, Baker DN, O'Brien TP, Xie L, Zong QG, Correlation between the inner edge of outer radiation belt electrons and the inner most plasmapause location, GRL 33, L14107 (2006). http://dx.doi.org/10.1029/2006GL026294   DOI
24 Lyons LR, Lee DY, Thorne RM, Horne RB, Smith AJ, Solar windmagnetosphere coupling leading to relativistic electron energization during high-speed streams, JGR 110, A11202 (2005). http://dx.doi.org/10.1029/2005JA011254   DOI
25 Reeves GD, McAdams KL, Friedel RHW, O'Brien TP, Acceleration and loss of relativistic electrons during geomagnetic storms, GRL 30, 1529 (2003). http://dx.doi.org/10.1029/2002GL016513   DOI
26 Meredith NP, Horne RB, Thorne RM, Anderson RR, Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt, GRL 30, 1871 (2003). http://dx.doi.org/10.1029/2003GL017698   DOI
27 Nunn D, A self-consistent theory of triggered VLF emissions, P&SS 22, 349-378 (1974). http://dx.doi.org/10.1016/0032-0633(74)90070-1   DOI
28 Omura Y, Katoh Y, Summers D, Theory and simulation of the generation of whistler-mode chorus, JGR 113, A04223, (2008). http://dx.doi.org/10.1029/2007JA012622   DOI