• Title/Summary/Keyword: anisotropic structure

Search Result 315, Processing Time 0.041 seconds

Strength Analysis of Mark III Cargo Containment System using Anisotropic Failure Criteria

  • Jeong, Han Koo;Yang, Young Soon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.211-226
    • /
    • 2015
  • Membrane type Mark III cargo containment system (CCS) is considered in this study to investigate its strength capability under applied loads due to liquefied natural gas (LNG) cargo. A rectangular plated structure supported by inner hull structure is exemplified from Mark III CCS according to classification society's guidance and it is assumed as multi-layered structure by stacking plywood, triplex, reinforced polyurethane (PU) foam and series of mastic upon inner hull structure. Commercially available general purpose finite element analysis package is used to have reliable FE models of Mark III CCS plate. The FE models and anisotropic failure criteria such as maximum stress, Hoffman, Hill, Tsai-Wu and Hashin taking into account the direction dependent material properties of Mark III CCS plate components and their material properties considering a wide variation of temperature due to the nature of LNG together form the strength analysis procedure of Mark III CCS plate. Strength capability of Mark III CCS plate is understood by its initial failure and post-initial failure states. Results are represented in terms of failure loads and locations when initial failure and post-initial failures are occurred respectively. From the results the basic design information of Mark III CCS plate is given.

A Study on the Anisotropic Flow Characteristics of Droplets on Rice Leaf Surface (벼 잎 표면에서 액적의 이방성 흐름 특성에 관한 연구)

  • Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.251-255
    • /
    • 2017
  • In this study, we aimed to clarify the wettability and anisotropic flow characteristics of rice leaves as a basic study for engineering applications of anisotropic flow characteristics of rice leaf surface. To investigate the surface structure of rice leaf, the micro grooves and asperities of rice leaves were analyzed and quantified by scanning electron microscope, Confocal laser scanning microscopy, and stylus profilometer. The analysis of the structure of rice leaf surface confirmed that asymmetrical cone - like protrusions in leaf veins were inclined toward the leaf tip. The static contact angle test showed that the contact angle at the midline vein or leaf vein location where the micropapilla is concentrated is about $20^{\circ}$ higher than the leaf blade position. The contact angles of fresh and dried rice leave were also compared. The dried rice leaves showed a contact angle of about $5^{\circ}$ to $15^{\circ}$ higher than that of fresh leaves, suggesting that the volume of the protrusions decreased as the water was removed, thus reducing the contact area with the droplet. In the contact angle history test the hysteresis in the leaf tip direction was found to be much lower than that in the leaf petiole direction. This results can be explained that asymmetrical cone - like protrusions had a significant effect on the droplet flow characteristics through contact angle hysteresis experiment.

Anisotropic Wet Etching of Single Crystal Silicon for Formation of Membrane Structure (멤브레인 구조 제작은 위한 단결정 실리콘의 이방성 습식 식각)

  • 조남인;강창민
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.37-40
    • /
    • 2003
  • We have studied micro-machining technologies to fabricate parts and sensors used in the semiconductor equipment. The studies were based on the silicon integrated circuit processes, and composed of the anisotropic etching of single crystal silicon to fabricate a membrane structure for hot and cold junctions in the infrared absorber. KOH and TMAH were used as etching solutions for the anisotropic wet etching for membrane structure formation. The etching characteristic was observed for the each solution, and etching rate was measured depending upon the temperature and concentration of the etching solution. The different characteristics were observed according to pattern directions and etchant concentration. The pattern was made to incline $45^{\circ}$ on the primary flat, and optimum etching property was obtained in the case of 30 wt% and $90^{\circ}C$ of KOH etching solution for the formation of the membrane structure.

  • PDF

Quasi-static Analysis on the Effect of the Finite Metal with the Anisotropic Grooved Dielectric in Microstrip Lines

  • Hong Ic-Pyo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.17-20
    • /
    • 2005
  • In this paper, we presented the quasi-static characteristics of novel microstrip lines with anisotropic grooved dielectric in finite metal. A quasi-static mode-matching method has been used to analyze this new structure and the simulation results are validated through comparison with other available results. The results in this paper show that it is possible to control the propagation characteristics of microstrip lines with the use of anisotropic grooved dielectric in finite metal. Also anisotropic grooved dielectric in microstrip line can be newly added to the design parameters of high performance three dimensional monolithic microwave circuits and other microwave applications.

  • PDF

Fabrication of Electrostatically Driven Comb Actuator Using (110) Oriented Si Anisotropic Etching ((110) 실리콘의 이방성 식각을 이용한 빗 모양 액츄에이터의 제작)

  • Lim, Hyung-Taek;Lee, Sang-Hun;Kim, Seong-Hyok;Kim, Yong-Kweon;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1974-1976
    • /
    • 1996
  • An electrostatically driven comb actuator with $525{\mu}m$ height was fabricated using (110) Si anisotropic etching in the Potassium Hydroxide(KOH) solution. The etch-rate and etch-rate ratio are strongly dependent on the weight % and temperature of KOH solution. We developed the optimal condition for the anisotropic etching on (110) wafer with varying these conditions. The force that the comb-drive actuator generates is inversely proportional to the distance of gap and proportional to the height of the comb electrodes. The electrodes must have the high aspect ratio. The (110) Si anisotropic etching is very useful to get a high aspect ratio structure.

  • PDF

Forward Calculation of Electric Potential, Electric Field and Resistivity Survey on Anisotropic Layered Half Space (이방성 층상구조에 대한 전위와 전기장 및 전기비저항탐사 계산 연구)

  • Na, Sung-Ho;Kim, Hyoung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.98-112
    • /
    • 2021
  • We followed and extended the algorithm originally made by Das (1995) to calculate the electric potential and field induced by electric current in arbitrary anisotropic layered structure. We confirmed all the theoretical contents and coded the corresponding program to acquire the electric potential and field. Further we extended to forward estimation of apparent resistivity to be attained by electrical resistivity survey on anisotropic layered structure with differing the electrode spacing and azimuth of anisotropy. The effects of anisotropy were reviewed by considering some examples.

Computational aspects of guided wave based damage localization algorithms in flat anisotropic structures

  • Moll, Jochen;Torres-Arredondo, Miguel Angel;Fritzen, Claus-Peter
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.229-251
    • /
    • 2012
  • Guided waves have shown a great potential for structural health monitoring (SHM) applications. In contrast to traditional non-destructive testing (NDT) methodologies, a key element of SHM approaches is the high process of automation. The monitoring system should decide autonomously whether the host structure is intact or not. A basic requirement for the realization of such a system is that the sensors are permanently installed on the host structure. Thus, baseline measurements become available that can be used for diagnostic purposes, i.e., damage detection, localization, etc. This paper contributes to guided wave-based inspection in anisotropic materials for SHM purposes. Therefore, computational strategies are described for both, the solution of the complex equations for wave propagation analysis in composite materials based on exact elasticity theory and the popular global matrix method, as well as the underlying equations of two active damage localization algorithms for anisotropic structures. The result of the global matrix method is an angular and frequency dependent wave velocity characteristic that is used subsequently in the localization procedures. Numerical simulations and experimental investigations through time-delay measurements are carried out in order to validate the proposed theoretical model. An exemplary case study including the calculation of dispersion curves and damage localization is conducted on an exemplary unidirectional composite structure where the ultrasonic signals processed in the localization step are simulated with the spectral element method. The proposed study demonstrates the capabilities of the proposed algorithms for accurate damage localization in anisotropic structures.

Effects of Anisotropic Properties of Composite Skins on Electromagnetic Wave Propagation in the Foam Core Sandwich Structures (폼 코어 샌드위치 구조물에서 복합재료 스킨의 이방성 특성이 전자기파 투과 특성에 미치는 영향에 관한 연구)

  • 신현수;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.234-237
    • /
    • 2001
  • In this study, efforts were made to understand the propagation of electromagnetic wave through the foam core sandwich structure by the analytical model. Foam core sandwich structure is composed of glass/epoxy composite skins and foam core. Transmittance and reflectance of the arbitrary linearly polarized incident TEM waves through the unidirectional composites, foam and foam core sandwich structures were determined as functions of thickness, fiber orientation of composites, incident angle and polarization angle by the analytical model. From the results of the analysis, the general tendency of transmittance and reflectance of electromagnetic wave through composites, foam and foam core sandwich structures was obtained.

  • PDF

Mössbauer Study of the Dynamics in BaFe12O19 Single Crystals

  • Choi, J.W.;Sur, J.C.;Lim, Jung-Tae;Kim, Chin-Mo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.6-8
    • /
    • 2012
  • M$\ddot{o}$ssbauer spectra of hexagonal $BaFe_{12}O_{19}$ single crystals were studied at various temperatures (4-300 K). It was found that the spin states in Fe atoms were parallel to the ${\gamma}$-ray's direction into a single crystal along the caxis. The location of the Fe ion in the 2b site is unusual in an oxide structure and has strong anisotropic lattice vibrations. Moreover, at room temperature, the zero absorption lines of the Fe ions at the 2b site were observed due to fast diffusion motion in a double well atomic potential. The two Fe ions of the single crystal mainly enter into the sites in the mirror plane of the trigonalbipyramidal structure.