• Title/Summary/Keyword: anisotropic random model

Search Result 12, Processing Time 0.017 seconds

Elasticity and Conduction analysis of multi-Phase, Misoriented Metal matrix Composites (방향분포를 가진 다상 금속복합재료의 탄성 및 전도해석에 관한 연구)

  • 정현조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2181-2193
    • /
    • 1995
  • The effective elasticity and conduction of composite materials containing arbitrarily oriented multiple phases has been analyzed using the concept of orientation-dependent average fields and concentration factors. The analysis provided closed form expressions for the effective stiffnesses and conductivities. Under the prescribed boundary conditions, the concentration factors were evaluated by the equivalent inclusion principle, through which the interaction between various phases is approximated by the Mori-Tanaka mean-field approximation. SiC particulate(SiC$_{p}$) reinforce aluminum(Al) matrix composites were fabricated and their elastic constants and electrical conductivities were measured together with a careful study of their microstructure. The measured properties showed a systematic anisotropy and this behavior could be attributed to the preferred orientation of SiC$_{p}$. The theoretical model developed was applied to the computation of the anisotropic properties of these composites. Both two-phase and three-phase composites were considered based on the microstructural information. The SiC$_{p}$ was modeled as an ellipsoid with planar random orientation distribution in the extruded Al/SiC$_{p}$ composites. The effect of extraneous phase such as intermetallic compounds was also investigated.tigated.

Generation of a 3D Artificial Joint Surface and Characterization of Its Roughness (삼차원 인공 절리면의 생성과 이에 대한 거칠기 특성 평가)

  • Choi, Seung-Beum;Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.516-523
    • /
    • 2016
  • Roughness of a joint surface is one of the most important parameters that affects the mechanical and hydraulic behavior of rock mass. Therefore, various studies on making constitutive model and/or roughness quantification have been conducted in experimental and empirical manners. Advances in recent 3D printing technology can be utilized to generate a joint surface with a specific roughness. In this study, a reliable technique to generate a rough joint surface was introduced and its quantitative assessment was made. Random midpoint displacement method was applied to generate a joint surface and the distribution of $Z_2$ was investigated to assess its roughness. As a result, a certain roughness can be embodied by controlling input parameters and furthermore it was able to generate a joint surface with specific roughness anisotropy.