DOI QR코드

DOI QR Code

Generation of a 3D Artificial Joint Surface and Characterization of Its Roughness

삼차원 인공 절리면의 생성과 이에 대한 거칠기 특성 평가

  • 최승범 (서울대학교 공과대학 에너지시스템공학부) ;
  • 이수득 (서울대학교 공과대학 에너지시스템공학부) ;
  • 전석원 (서울대학교 공과대학 에너지시스템공학부)
  • Received : 2016.12.13
  • Accepted : 2016.12.27
  • Published : 2016.12.31

Abstract

Roughness of a joint surface is one of the most important parameters that affects the mechanical and hydraulic behavior of rock mass. Therefore, various studies on making constitutive model and/or roughness quantification have been conducted in experimental and empirical manners. Advances in recent 3D printing technology can be utilized to generate a joint surface with a specific roughness. In this study, a reliable technique to generate a rough joint surface was introduced and its quantitative assessment was made. Random midpoint displacement method was applied to generate a joint surface and the distribution of $Z_2$ was investigated to assess its roughness. As a result, a certain roughness can be embodied by controlling input parameters and furthermore it was able to generate a joint surface with specific roughness anisotropy.

절리면의 거칠기는 암반의 역학적, 수리적 거동에 중요한 영향을 미치는 요인이다. 따라서 이를 해석하기 위한 여러 가지 구성 모델 및 거칠기 정량화 연구가 실험적, 경험적으로 수행되어 왔다. 최근 3D 프린팅 기술의 발전은 특정 거칠기를 갖는 절리면을 생성하는 데 활용될 수 있으며 본 논문에서는 이에 적합한 절리면 생성기법을 소개하고 정량적 평가를 수행하였다. 프랙탈 이론에 따른 랜덤중점변위법을 적용하였으며 생성된 절리면의 거칠기 평가는 $Z_2$의 분포를 계산하여 수행하였다. 그 결과 입력변수 제어를 통하여 목표로 한 거칠기를 구현할 수 있었으며 더 나아가 특정 거칠기 이방성비를 갖는 절리면을 생성할 수 있음을 확인하였다.

Keywords

References

  1. BARTON, N. & CHOUBEY, V., 1977, The shear strength of rock joints in theory and practice. Rock mechanics, 10(1-2), p. 1-54. https://doi.org/10.1007/BF01261801
  2. BARTON, N., 1978, Suggested methods for the quantitative description of discontinuities in rock masses. ISRM, International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 15(6). p. 319-368. https://doi.org/10.1016/0148-9062(78)91472-9
  3. BEER, A., STEAD, D. & COGGAN, J., 2002, Technical note estimation of the joint roughness coefficient (JRC) by visual comparison. Rock Mechanics and Rock Engineering, 35(1). p. 65-74. https://doi.org/10.1007/s006030200009
  4. BELEM, T., HOMAND-ETIENNE, F. & SOULEY, M., 2000, Quantitative parameters for rock joint surface roughness. Rock mechanics and rock engineering. 33(4), p. 217-242. https://doi.org/10.1007/s006030070001
  5. LEE, Y.-H., CARR, J., BARR, D. & HAAS, C., 1990, The fractal dimension as a measure of the roughness of rock discontinuity profiles. International journal of rock mechanics and mining sciences & geomechanics, 27(6). p. 453-464. https://doi.org/10.1016/0148-9062(90)90998-H
  6. LI, Y. & ZHANG, Y., 2015, Quantitative estimation of joint roughness coefficient using statistical parameters. International Journal of Rock Mechanics and Mining Sciences, 77, p. 27-35. https://doi.org/10.1016/j.ijrmms.2015.03.016
  7. TATONE, B. S. & GRASSELLI, G., 2010, A new 2D discontinuity roughness parameter and its correlation with JRC. International Journal of Rock Mechanics and Mining Sciences, 47(8), p. 1391-1400. https://doi.org/10.1016/j.ijrmms.2010.06.006
  8. TSE, R. & CRUDEN, D., 1979, Estimating joint roughness coefficients. International journal of rock mechanics and mining sciences & geomechanics, 16(5) p. 303-307. https://doi.org/10.1016/0148-9062(79)90241-9
  9. XIE, H., 1993, Fractals in rock mechanics, A.A. Balkema. Netherlands.
  10. YANG, Z., LO, S. & DI, C., 2001, Reassessing the joint roughness coefficient (JRC) estimation using Z2. Rock mechanics and rock engineering, 34(3), p. 243-251. https://doi.org/10.1007/s006030170012
  11. YU, X. & VAYSSADE, B., 1991, Joint profiles and their roughness parameters. International journal of rock mechanics and mining sciences & geomechanics, 28(4). p. 333-336. https://doi.org/10.1016/0148-9062(91)90598-G
  12. 박정욱, 이용기, 송재준, 최병희. 2012, 암석 절리면 거칠기의 새로운 차원정량화계수. 터널과 지하공간, 22(2), p. 106-119.
  13. 서현교, 엄정기. 2012, 랜덤중점변위법에 의한 거칠기의 생성 및 활용에 관한 연구. 터널과 지하공간, 22(3), p. 196-204.

Cited by

  1. Development of a New Method for the Quantitative Generation of an Artificial Joint Specimen with Specific Geometric Properties vol.11, pp.2, 2019, https://doi.org/10.3390/su11020373