• 제목/요약/키워드: anisotropic plates

검색결과 69건 처리시간 0.024초

복합재료판 구조물의 고유진동수 위상최적화에 관한 연구 (Study on Topology Optimization for Eigenfrequency of Plates with Composite Materials)

  • 김화일;윤혁기;한경민
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1356-1363
    • /
    • 2009
  • The aim of this research is to construct eigenfrequency optimization codes for plates with Arbitrary Rank Microstructures. From among noise factors, resonance sound is main reason for floor's solid noise. But, Resonance-elusion design codes are not fixed so far. Besides, The prediction of composite material's capability and an resonance elusion by controlling natural frequency of plate depend on designer's experiences. In this paper, First, using computer program with arbitrary rank microstructure, variation on composite material properties is studied, and then natural frequency control is performed by plate topology optimization method. The results of this study are as followed. 1) Programs that calculate material properties along it's microstructure composition and control natural frequency on composite material plate are coded by Homogenization and Topology Optimization method. and it is examined by example problem. 2) Equivalent material properties, calculated by program, are examined for natural frequency. In this paper, Suggested programs are coded using $Matlab^{TM}$, Feapmax and Feap Library with Homogenization and Topology Optimization method. and Adequacy of them is reviewed by performing the maximization or minimization of natural frequency for plates with isotropic or anisotropic materials. Since the programs has been designed for widely use. If the mechanism between composite material and other structural member is identified, extension application may be possible in field of structure maintenance, reinforcement etc. through application of composite material.

Nanocrystals and Their Biomedical Applications

  • Jun, Young-wook;Jang, Jung-tak;Cheon, Jin-woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권7호
    • /
    • pp.961-971
    • /
    • 2006
  • Shape controlled synthesis of inorganic nanocrystals is one of the important issues in materials chemistry due to their novel shape dependent properties. Although various shapes of nanocrystals have been developed, a systematic account on the shape control of these nanocrystals still remains an important subject in materials chemistry. In this article, we will overview the recent developments in the geometrical shape evolution of semiconductor and metal oxide nanocrystals obtained by nonhydrolytic synthetic methods. Many structurally unprecedented motifs have appeared as zero-dimesional (D) polyhedrons, one-D rods and wires, two-D plates and prisms, and other advanced shapes such as branched rods, stars, and inorganic dendrites. Important parameters which determine the geometrical shapes of nanocrystals are also illustrated. In addition, as a possible application of such nanocrystals for biomedical sciences, we further describe their utilizations for cancer diagnosis through nanocrystal-assisted magnetic resonance imaging (MRI).

Circular Polarizers for Reflective LCDs

  • Yoshimi, Hiroyuki;Yano, Shuji;Fujimura, Yasuo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.905-909
    • /
    • 2002
  • Characteristics of reflective LCDs, which have gained a lot of notice in recent years, rely largely on optical design of circular polarizers and the quarter-wave plates, as a component. Important design includes wavelength dispersion, viewing angle, uniformity of display and matching of refractive index. Our work has contributed to improving performance of reflective LCDs by enhancing the characteristics of polymer film using stretching and optical lamination technologies. To design that offers higher contrast and wider viewing angle, we have discovered that it is necessary to control viewing angle variation of the polarizing axis in order to compensate for the viewing angle of the polarizing film as well as the optical anisotropic properties of liquid crystal. Applying this technology to circular polarizers used for reflective LCDs enables design of wide viewing angle circular polarizers. In order to realize higher contrast for reflective LCDs, it is also necessary to design other optical materials including polarizing films. For design of hybrid optical film, it is particularly necessary to reduce surface reflection and interface reflection. This paper also reports our findings concerning this topic.

  • PDF

An efficient high-order warping theory for laminated plates

  • Deng, Zhongmin;Huang, Chuanyue
    • Structural Engineering and Mechanics
    • /
    • 제22권5호
    • /
    • pp.599-611
    • /
    • 2006
  • The theory with hierarchical warping functions had been used to analyze composite thin-walled structure, laminated beam and had good results. In the present paper, a series of hierarchical warping functions are developed to analyze the cylindrical bending problems of composite lamina. These warping functions which refine through-the-thickness variation of displacements were composed of basic and corrective functions by taking into account of anisotropic, material discontinues, and transverse shear and normal strain. Then the hierarchical finite element method was used to form a numerical algorithm. The distribution of the displacements, in-plane stresses, transverse shear stresses and transverse normal stress for composite laminate were analyzed with the present model. The results show that the present model has precise mechanical response compared with the first deformation transverse theory and the corrective order affects the accuracy of result.

복합 적층 개단면 보의 최적설계 (Optimal Design of Laminated Composite Beams with Open Cross Section)

  • 배하록;홍순호;신영석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.309-316
    • /
    • 1999
  • Laminated composite plates are very useful in various fields of engineering where high strength-to-weight and stiffness-to-weight ratios are required. Design optimization of composite structures has gained importance in recent years as the engineering applications of fiber reinforced materials have increased and weight savings has become an essential design objective. However, due to the anisotropic material properties of laminated composite structure it is very difficult to analyze and design. In this study, numerical optimization technique together with the finite element method is used to find the optimum design of FRP. Various combination of fiber orientation for the laminate layers are investigated and several local optimum solutions are found.

  • PDF

나일론66에서 유리섬유의 종류 및 애향에 따른 기계적 물성 연구 (A study on the mechanical properties of reinforced Nylon66 for glass fiber type and its orientation)

  • 유종범;류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.374-377
    • /
    • 2009
  • Glass fiber reinforced nylon has been used in many plastic industries. Mechanical properties of reinforced plastics depend upon types of glass fiber as well as loading of glass fiber. Tensile properties of glass fiber reinforced nylon66 have been studied for different glass fiber types and sizes. Types of glass fibers were circular and flat, and diameters were 7, 10, and 13 micrometers. Orientations of glass fibers in the matrix of nylon66 have been analyzed through X-ray CT. Tensile specimens were prepared by cutting out of square plates of $100{\times}100{\times}3mm$ with different angles such as 0, 45, and $90^{\circ}$ to the flow direction. As the loading of glass fiber increases to 45 wt% tensile strength increases up 2.5 times compare with neat nylon66. Anisotropic tensile strength has been observed and minimum tensile strength was measured in the specimen cut from perpendicular to the flow direction.

  • PDF

Lyotropic Chromonic Liquid Crystals in Aligned Films for Applications as Polarizing Coatings

  • Schneider, Tod;Golovin, Andrii;Lee, Jong-Chan;Lavrentovich, Oleg D.
    • Journal of Information Display
    • /
    • 제5권2호
    • /
    • pp.27-38
    • /
    • 2004
  • We describe dried oriented films with anisotropic structural and optical properties prepared from the aqueous solutions of plank-like molecules, the so-called Lyotropic Chromonic Liquid Crystals (LCLCs). The dried LCLC films may be used as optical elements, such as polarizers, compensators, color filters, or retardation plates in the UV, visible, or infrared parts of spectrums. The optical quality of the films is determined by the uniformity of the molecular alignment, which often distorted by periodic variations of the director field. We describe different ways to improve the alignment properties of the films by using additives. We present compositions capable of polarizing effects in visible and UV parts of spectrum.

복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구 (Experimental fabrication and analysis of thermoelectric devices)

  • 성만영;송대식;배원일
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

L-형상 압전체 센서 배열을 이용한 충격 및 손상 탐지 기법 개발 (Impact and Damage Detection Method Utilizing L-Shaped Piezoelectric Sensor Array)

  • 정휘권;이명준;박규해
    • 비파괴검사학회지
    • /
    • 제34권5호
    • /
    • pp.369-376
    • /
    • 2014
  • 항공기 구조물 표면에 발생하는 외부 충격은 크랙과 같은 손상을 발생시킬 수 있으며 이는 차후 큰 결함을 야기하기 때문에 충격과 손상을 탐지하고 위치를 추정하는 것은 구조 안정성 모니터링에 있어 중요한 부분이다. 본 연구에서는 능동, 수동 센싱기법을 조합한 L-형상 압전체 센서 배열을 사용하여 충격과 손상을 탐지할 수 있는 기법을 개발하였다. 수동 센싱기법으로 1개 센서군 당 3개의 센서를 L-형상으로 배치하여 충격 발생 각도를 추정하고 2개의 센서군을 사용하여 충격위치를 탐지하는 방법을 도입하였다. 이 수동 센싱기법을 유도초음파 기반의 능동 센싱기법에 확대 적용하여 동일한 압전소자로 충격 탐지와 더불어 손상을 탐지할 수 있는 방법을 개발하였다. 이 기법은 방향에 따른 파동의 속도 변화와 같은 구조물에 대한 정보 없이도 위치 추정이 가능하여 비등방성 구조 내에서도 정확한 충격 및 손상 위치 정보를 얻을 수 있다. 개발된 기법을 날개 형태 구조물 및 CFRP 판에 적용하여 실험적으로 정확한 충격 및 손상 위치를 추정할 수 있음을 증명하였다.

저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구 (A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact)

  • 안국찬;김문생;김규남
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.9-19
    • /
    • 1989
  • 본 논문에서는 복합 적층판의 이론적 충격 응답을 통한 충격 응력 및 충격파 전파를 해석하기 위하여 이질, 이방성 판에 전단 변형을 고려한 Whitney와 Pagano의 이론에 기초를 두고 정적 접촉법칙과 연계한 동적 유한요소해석(FEA)을 하여, 이 중 충격 접촉력에 관하여는 각각 [0。/45。/0。/-45。/0。]$_{2s}$와 [90。/45。/90。/-45。/90。]$_{2s}$의 두 적층 형태를 가지는 흑연/에폭시와 유리/ 에폭시 복합 재료에 대한 강구에 의한 충격 해석을 하여, Yang의 식에 의한 최대 접촉력과 비교 검토하였고, 다음 변형율 파형을 파동 전파(wave propagation) 이론에 의해 비교 검토하므로써 본 이론해석의 타당성을 입증하였고, 재료 및 적층 형태에 따른 충격 응답, 충격 응력 및 충격파 전파 특성에 대하여 연구하였다.하였다.