• Title/Summary/Keyword: anisotropic molecular interaction

Search Result 9, Processing Time 0.025 seconds

Orientation and deformation of FENE dumbbells in confined microchannel and contraction flow geometry

  • Song, Sun-Jin;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong;Yeo, Jong-Kee
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.3
    • /
    • pp.147-156
    • /
    • 2007
  • The orientation and deformation of polymer chains in a confined channel flow has been investigated. The polymer chain was modeled as a Finitely Extensible Nonlinear Elastic (FENE) dumbbell. The Brownian configuration field method was extended to take the interaction between the flow and local chain dynamics into account. Drag and Brownian forces were treated as anisotropic in order to reflect the influence of the wall in the confined flow. Both Poiseuille flow and 4 : 1 contraction flow were considered. Of particular interest was molecular tumbling of polymer chains near the wall. It was strongly influenced by anisotropic drag and high shear close to the wall. We discussed the mechanism of this particular behavior in terms of the governing forces. The dumbbell configuration was determined not only by the wall interaction but also by the flow type of the geometric origin. The effect of extensional flow on dumbbell configuration was also discussed by comparing with the Poiseuille flow.

The effects of temperature and vacancy defect on the severity of the SLGS becoming anisotropic

  • Tahouneh, Vahid;Naei, Mohammad Hasan;Mashhadi, Mahmoud Mosavi
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.647-657
    • /
    • 2018
  • Geometric imperfections may be created during the production process or setting borders of single-layer graphene sheets (SLGSs). Vacancy defects are an instance of geometric imperfection, so investigating the effect of these vacancies on the mechanical properties of single-layer graphene is extremely important. Since very few studies have been conducted on the structure of imperfect graphene (with the vacancy defect) as an anisotropic structure, further study of this defective structure seems imperative. Due to the vacancy defects and for the proper assessment of mechanical properties, the graphene structure should be considered anisotropic in certain states. The present study investigates the effects of site and size of vacancy defects on the mechanical properties of graphene as an anisotropic structure using the lekhnitskii interaction coefficients and Molecular Dynamic approach. The effect of temperature on the severity of the SLGS becoming anisotropic is also investigated in this study. The results reveal that the amount of temperature has a big effect on the severity of the structure getting anisotropic even for a graphene without any defects. The effect of aspect ratio, temperature and also size and site of vacancy defects on the material properties of the graphene are studied in this research work. According to the present study, using material properties of flawless graphene for imperfect structure can lead to inaccurate results.

Magnetic Susceptibility of Anisotropically Interacting Spin-Pair Systems

  • Kim, Jin-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.347-349
    • /
    • 1994
  • The Oguchi theory of antiferromagnetism has been modified for antiferromagnetically interacting spin-pair systems with anisotropic exchange interaction. The parallel and perpendicular susceptibilities $({\chi}_{\parallel}\;and\;{\chi}_{\perp})$ have been expressed as functions of exchange interactions $(J_z\;and\;{\gamma}=J_x/J_z)$, anisotropic molecular field parameters $({\kappa}\;and\;{\kappa}_x)$, $g_z\;and\;g_x$. In contrast to the previous theories, the parallel susceptibilities are not the same as the perpendicular susceptibilities above Neel temperature $T_N$.

Multiscale modeling of the anisotropic shock response of β-HMX molecular polycrystals

  • Zamiri, Amir R.;De, Suvranu
    • Interaction and multiscale mechanics
    • /
    • v.4 no.2
    • /
    • pp.139-153
    • /
    • 2011
  • In this paper we develop a fully anisotropic pressure and temperature dependent model to investigate the effect of the microstructure on the shock response of ${\beta}$-HMX molecular single and polycrystals. This micromechanics-based model can account for crystal orientation as well as crystallographic twinning and slip during deformation and has been calibrated using existing gas gun data. We observe that due to the high degree of anisotropy of these polycrystals, certain orientations are more favorable for plastic deformation - and therefore defect and dislocation generation - than others. Loading along these directions results in highly localized deformation and temperature fields. This observation confirms that most of the temperature rise during high rates of loading is due to plastic deformation or dislocation pile up at microscale and not due to volumetric changes.

The Alignment of Liquid Crystals on the Film Surfaces of Soluble Aromatic Polyimides Bearing t-Butylphenyl and Trimethylsilylphenyl Side Groups

  • Hahm, Suk-Gyu;Jin, Kyeong-Sik;Park, Sam-Dae;Ree, Moon-Hor;Kim, Hyung-Sun;Kwon, Soon-Ki;Kim, Yun-Hi
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.976-986
    • /
    • 2009
  • With the study goal of firstly elucidating the anisotropic interactions between oriented polymer chain segments and liquid crystal (LC) molecules, and secondly of determining the contributions of the chemical components of the polymer segments to the film surface topography, LC alignment, pretilt, and anchoring energy, we synthesized three dianhydrides, 1,4-bis(4'-t-butylphenyl)pyromellitic dianhydride (BBPD), 1,4-bis(4'-trimethylsilylphenyl)pyromellitic dianhydride(BTPD), and 2,2'-bis(4"-tert-butylphenyl)-4,4',5,5'-biphenyltetracarboxylic dianhydride (BBBPAn), and a series of their organosoluble polyirnides, BBPD-ODA, BBPD-MDA, BBPD-FDA, BTPD-FDA, and BBBPAn-FDA, which contain the diamines 4,4'-oxydianiline (ODA), 4,4'-methylenediamine (MDA), and 4,4'-(hexafluoroisopropylidene)dianiline (FDA). All the polyimides were determined to be positive birefringent polymers, regardless of the chemical components. Although all the rubbed polyimide films exhibited microgrooves which were created by rubbing process, the film surface topography varied depending on the polyimides. In all the rubbed films, the polymer chains were unidirectionally oriented along the rubbing direction. However, the degree of in-plane birefringence in the rubbed film varied depending on the polyimides. The rubbing-aligned polymer chains in the polyimide films effectively induced the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The azimuthal and polar anchoring energies of the LCs ranged from $0.45{\times}10^{-4}\;-\;1.37{\times}10^{-4}\;J/m^2$ and from $0.86{\times}10^{-5}\;-\;4.26{\times}10^{-5}\;J/m^2$, respectively, depending on the polyimides. The pretilt angles of the LCs were in the range $0.10-0.62^{\circ}$. In summary, the soluble aromatic polyimides reported here are promising LC alignment layer candidates for the production of advanced LC display devices.

The Interfacial Electronic Structure of Organic-organic Heterojunction: Effect of Molecular Orientation

  • Jo, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.114.2-114.2
    • /
    • 2014
  • The orientation of the constituent molecules in organic thin film devices can affect significantly their performance due to the highly anisotropic nature of ${\pi}$-conjugated molecules. We report here an angle dependent x-ray absorption study of the control of such molecular orientation using well-ordered interlayers for the case of a bilayer heterojunction of chloroaluminum phthalocyanine (ClAlPc) and C60. Furthermore, the orientation-dependent energy level alignment of the same bilayer heterojunction has been measured in detail using synchrotron radiation-excited photoelectron spectroscopy. Regardless of the orientation of the organic interlayer, we find that the subsequent ClAlPc tilt angle improves the ${\pi}-{\pi}$ interaction at the interface, thus leading to an improved short-circuit current in photovoltaic devices based on ClAlPc/C60. The use of the interlayers does not change the effective band gap at the ClAlPc/C60 heterointerface, resulting in no change in open-circuit voltage.

  • PDF

A Study on Alignment of Nematic Liquid Crystal by Using Slanted Non-polarized Ultraviolet Light Irradiation on Polyimide Film (폴리이미드막표면위에 경사진 자외선 조사를 이용한 네마틱 액정의 배향에 관한 연구)

  • 서대식;황율연;이보호
    • Electrical & Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.461-466
    • /
    • 1997
  • In this paper, we developed the new non-rubbing liquid crystal (LC) alignment techniques in the cell with slanted non-polarized ultraviolet (UV) light irradiation on polyimide (PI) film. It is shown that the uniform alignment for nematic (N) LC is obtained by using slanted non-polarized UV light irradiation on PI surface. We successfully obtained that the pretilt angle of NLC is generated about 3.3 degree in the cell with slanted non-polarized UV light irradiation with 70 degree on PI surface, for the first time. It is considered that the pretilt angle generation in NLC is attributed to interaction between the LC molecular and the PI, which is broken the polymer by slanted non-polarized UV irradiation. Therefore, we concluded that the uniform LC alignment is attributed to anisotropic dispersion force due to photo depolymerization with slanted non-polarized UV light irradiation on PI surface.

  • PDF

A Study on Effect of Photo-alignment in Nematic Liquid Crystal on Polyimide Film (폴리이미드막을 이용한 광배향 효과에 관한 연구)

  • 서대식;황율연
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.116-119
    • /
    • 1997
  • We investigated new type non-robbing liquid crystal (LC) alignment techniques in the cell with slanted non-polarized ultraviolet (UV) irradiation on polyimide (Pl) film. It is shown that the uniform alignment for nematic (N) LC is obtained by using slanted non-polarized UV irradiation on Pl surface. We successfully obtained that the pretilt ang1e of NLC is generated about 3 degree in the LC cells by using slanted non-polarized UV irradiation with 70 degree on Pl surface. We consider that the pretilt angle generation for NLC is attributed to interaction between the LC molecular and the PI surface. We conclude that the uniform LC alignment is attributed to anisotropic dispersion force effect due to photo depolymerization of polymer on Pl surface.

  • PDF