• Title/Summary/Keyword: anisotropic material

Search Result 452, Processing Time 0.033 seconds

Growth and characterization of MgZnO grown on R-plane sapphire substrate by plasma-assisted molecular beam epitaxy

  • Han, Seok-Kyu;Kim, Jung-Hyun;Hong, Soon-Ku;Lee, Jae-Wook;Lee, Jeong-Yong;Kim, Ho-Jong;Song, Jung-Hoon;Yao, Takafumi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.114-114
    • /
    • 2009
  • ZnO has received considerable attention due to its potential applicability to optoelectronic devices such as ultraviolet-light emitting diodes (UVLEDs) and laser diodes (LDs). As well known, however, polar ZnO with the growth direction along the c-axis has spontaneous and piezoelectric polarizations that will result in decreased quantum efficiency. Recently, nonpolar ZnO has been studied to avoid such a polarization effect. In order to realize applications of nonpoar ZnO-based films to LEDs, growth of high quality alloys for quantum well structures is one of the important tasks that should be solved. $Mg_xZn_{1-x}O$ and $Cd_xZn_{1-x}O$ is ones of most promising alloys for this application because the alloys of ZnO with MgO and CdO provide a wide range of band-gap engineering spanning from 2.4 to 7.8 eV. In this study, we investigated on $Mg_xZn_{1-x}O$ films grown with various Mg/Zn flux ratios The films were grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). we investigated on $Mg_xZn_{1-x}O$ films grown with various Mg/Zn flux ratios. The films were grown on R-plane sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). With the relatively low Mg/Zn flux ratios, a typical striated anisotropic surface morphology which was generally observed from the nonpolar (11-20) ZnO film on r-plane sapphire substrates. By increasing the Mg/Zn flux ratio, however, additional islands were appeared on the surface and finally the surface morphology was entirely changed, which was generally observed for the (0001) polar ZnO films by losing the striated morphology. Investigations by X-ray $\Theta-2{\Theta}$ diffraction revealed that (0002) and (10-11) ZnO planes are appeared in $Mg_xZn_{1-x}O$ films by increasing the Mg/Zn flux ratio. Further detailed investigation by transmission electron microscopy (TEM) and photoluminescence (PL) will be discussed.

  • PDF

Analysis of Mass Transport in PEMFC GDL (연료전지 가스확산층(GDL) 내의 물질거동에 대한 연구)

  • Jeong, Hee-Seok;Kim, Jeong-Ik;Lee, Seong-Ho;Lim, Cheol-Ho;Ahn, Byung-Ki;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.979-988
    • /
    • 2012
  • The 3D structure of GDL for fuel cells was measured using high-resolution X-ray tomography in order to study material transport in the GDL. A computational algorithm has been developed to remove noise in the 3D image and construct 3D elements representing carbon fibers of GDL, which were used for both structural and fluid analyses. Changes in the pore structure of GDL under various compression levels were calculated, and the corresponding volume meshes were generated to evaluate the anisotropic permeability of gas within GDL as a function of compression. Furthermore, the transfer of liquid water and reactant gases was simulated by using the volume of fluid (VOF) and pore-network model (PNM) techniques. In addition, the simulation results of liquid water transport in GDL were validated by analogous experiments to visualize the diffusion of fluid in porous media. Through this research, a procedure for simulating the material transport in deformed GDL has been developed; this will help in optimizing the clamping force of fuel cell stacks as well as in determining the design parameters of GDL, such as thickness and porosity.

Enhancement of light extraction efficiency in vertical light-emitting diodes with MgO nano-pyramids structure

  • Son, Jun-Ho;Yu, Hak-Ki;Lee, Jong-Lam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03a
    • /
    • pp.16-16
    • /
    • 2010
  • GaN-based light-emitting diodes (LEDs) are attracting great interest as candidates for next-generation solid-state lighting, because of their long lifetime, small size, high efficacy, and low energy consumption. However, for general illumination applications, the external quantum efficiency of LEDs, determined by the internal quantum efficiency (IQE) and the light extraction efficiency, must be further increased. The IQE is determined by crystal quality and epitaxial layer structure and high value of IQE more than 70% for blue LEDs have been already reported. However, there is much room for improvement of light extraction efficiency because most of the generated photons from active layer remain inside LEDs by total internal reflection at the interface of semiconductor with air due to the high refractive index difference between LEDs epilayer (for GaN, n=2.5) and air (n=1). The light confining in LEDs will be reabsorbed by the metal electrode or active layer, reducing the efficacy of LEDs. Here, we present the first demonstration of enhanced light extraction by forming a MgO nano-pyramids structure on the surface of vertical-LEDs. The MgO nano-pyramids structure was successfully fabricated at room temperature using conventional electron-beam evaporation without any additional process. The nano-sized pyramids of MgO are formed on the surface during growth due to anisotropic characteristics between (111) and (200) plane of MgO. The ZnO layer with quarter-wavelength in thickness is inserted between GaN and MgO layers to increase the critical angle for total internal reflection, because the refractive index of ZnO (n=1.94) could be matched between GaN (n=2.5) and MgO (n=1.73). The MgO nano-pyramids structure and ZnO refractive-index modulation layer enhanced the light extraction efficiency ofV-LEDs with by 49%, comparing with the V-LEDs with a flat n-GaN surface. The angular-dependent emission intensity shows the enhanced light extraction through the side walls of V-LEDs as well as through the top surface of the n-GaN, because of the increase in critical angle for total internal reflection as well as light scattering at the MgO nano-pyramids surface.

  • PDF

Ordered Macropores Prepared in p-Type Silicon (P-형 실리콘에 형성된 정렬된 매크로 공극)

  • Kim, Jae-Hyun;Kim, Gang-Phil;Ryu, Hong-Keun;Suh, Hong-Suk;Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.241-241
    • /
    • 2008
  • Macrofore formation in silicon and other semiconductors using electrochemical etching processes has been, in the last years, a subject of great attention of both theory and practice. Its first reason of concern is new areas of macropore silicone applications arising from microelectromechanical systems processing (MEMS), membrane techniques, solar cells, sensors, photonic crystals, and new technologies like a silicon-on-nothing (SON) technology. Its formation mechanism with a rich variety of controllable microstructures and their many potential applications have been studied extensively recently. Porous silicon is formed by anodic etching of crystalline silicon in hydrofluoric acid. During the etching process holes are required to enable the dissolution of the silicon anode. For p-type silicon, holes are the majority charge carriers, therefore porous silicon can be formed under the action of a positive bias on the silicon anode. For n-type silicon, holes to dissolve silicon is supplied by illuminating n-type silicon with above-band-gap light which allows sufficient generation of holes. To make a desired three-dimensional nano- or micro-structures, pre-structuring the masked surface in KOH solution to form a periodic array of etch pits before electrochemical etching. Due to enhanced electric field, the holes are efficiently collected at the pore tips for etching. The depletion of holes in the space charge region prevents silicon dissolution at the sidewalls, enabling anisotropic etching for the trenches. This is correct theoretical explanation for n-type Si etching. However, there are a few experimental repors in p-type silicon, while a number of theoretical models have been worked out to explain experimental dependence observed. To perform ordered macrofore formaion for p-type silicon, various kinds of mask patterns to make initial KOH etch pits were used. In order to understand the roles played by the kinds of etching solution in the formation of pillar arrays, we have undertaken a systematic study of the solvent effects in mixtures of HF, N-dimethylformamide (DMF), iso-propanol, and mixtures of HF with water on the macrofore structure formation on monocrystalline p-type silicon with a resistivity varying between 10 ~ 0.01 $\Omega$ cm. The etching solution including the iso-propanol produced a best three dimensional pillar structures. The experimental results are discussed on the base of Lehmann's comprehensive model based on SCR width.

  • PDF

Radiation Therapy Using M3 Wax Bolus in Patients with Malignant Scalp Tumors (악성 두피 종양(Scalp) 환자의 M3 Wax Bolus를 이용한 방사선치료)

  • Kwon, Da Eun;Hwang, Ji Hye;Park, In Seo;Yang, Jun Cheol;Kim, Su Jin;You, Ah Young;Won, Young Jinn;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Helmet type bolus for 3D printer is being manufactured because of the disadvantages of Bolus materials when photon beam is used for the treatment of scalp malignancy. However, PLA, which is a used material, has a higher density than a tissue equivalent material and inconveniences occur when the patient wears PLA. In this study, we try to treat malignant scalp tumors by using M3 wax helmet with 3D printer. Methods and materials: For the modeling of the helmet type M3 wax, the head phantom was photographed by CT, which was acquired with a DICOM file. The part for helmet on the scalp was made with Helmet contour. The M3 Wax helmet was made by dissolving paraffin wax, mixing magnesium oxide and calcium carbonate, solidifying it in a PLA 3D helmet, and then eliminated PLA 3D Helmet of the surface. The treatment plan was based on Intensity-Modulated Radiation Therapy (IMRT) of 10 Portals, and the therapeutic dose was 200 cGy, using Analytical Anisotropic Algorithm (AAA) of Eclipse. Then, the dose was verified by using EBT3 film and Mosfet (Metal Oxide Semiconductor Field Effect Transistor: USA), and the IMRT plan was measured 3 times in 3 parts by reproducing the phantom of the head human model under the same condition with the CT simulation room. Results: The Hounsfield unit (HU) of the bolus measured by CT was $52{\pm}37.1$. The dose of TPS was 186.6 cGy, 193.2 cGy and 190.6 cGy at the M3 Wax bolus measurement points of A, B and C, and the dose measured three times at Mostet was $179.66{\pm}2.62cGy$, $184.33{\pm}1.24cGy$ and $195.33{\pm}1.69cGy$. And the error rates were -3.71 %, -4.59 %, and 2.48 %. The dose measured with EBT3 film was $182.00{\pm}1.63cGy$, $193.66{\pm}2.05cGy$ and $196{\pm}2.16cGy$. The error rates were -2.46 %, 0.23 % and 2.83 %. Conclusions: The thickness of the M3 wax bolus was 2 cm, which could help the treatment plan to be established by easily lowering the dose of the brain part. The maximum error rate of the scalp surface dose was measured within 5 % and generally within 3 %, even in the A, B, C measurements of dosimeters of EBT3 film and Mosfet in the treatment dose verification. The making period of M3 wax bolus is shorter, cheaper than that of 3D printer, can be reused and is very useful for the treatment of scalp malignancies as human tissue equivalent material. Therefore, we think that the use of casting type M3 wax bolus, which will complement the making period and cost of high capacity Bolus and Compensator in 3D printer, will increase later.

Study on Anisotropy of Completely Weathered Mudstone under Ko Normally Consolidation (Ko 정규압밀 이암풍화토의 이방성에 관한 연구)

  • Kim, Young-Su;Kim, Byung-Tak;Kim, Jong-Seung;Park, Myung-Lyul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.5-12
    • /
    • 2000
  • Mudstone, found Du-Ho Dong and around there in Po-Hang, is used as construction material. When it is exposed to the air and contacts with water, the strength is decreased rapidly and then it causes a lot of problems. In the field, clay soils with $K_o$ condition have anisotropic characteristics which behave differently according to the change of principal stress direction. In this study, $K_o$ consolidation is performed to make the completely weathered mudstone under the same conditions of construction place. Then, the triaxial compression test is performed at different shear velocity and anisotropy by sampling degree and the stress - strain behavior is shown the strain softening behavior. The stress - strain relationship from triaxial compression test is compared with the prediction value of Cam-clay model. From the results of tests, $K_o$ value decreases with the increase of sampling degree. Generally the behavior of $K_o$ consolidated specimen shows work-softening characteristic. The trend of behaviour of the measured is nearly to same to the predicted by Cam-clay model. But the measured value of deviator stress is very higher than the predicted. Therefore, Cam-clay model was not appropriate to the completely weathered mudstone consolidated with $K_o$ condition in Pohang region.

  • PDF

Influence of Layer-thickness and Annealing on Magnetic Properties of CoSiB/Pd Multilayer with Perpendicular Magnetic Anisotropy (박막 두께 및 열처리가 수직자기이방성을 갖는 CoSiB/Pd 다층박막의 자기적 특성에 미치는 영향)

  • Jung, Sol;Yim, Haein
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.76-80
    • /
    • 2016
  • CoSiB is the amorphous ferromagnetic material and multilayer consisting of CoSiB and Pd has perpendicular magnetic anisotropic property. PMA has strong advantages for STT-MRAM. Moreover, amorphous materials have two advantages more than crystalline materials: no grain boundary and good thermal stability. Therefore, we studied the magnetic properties of multilayers consisting of the $Co_{75}Si_{15}B_{10}$ with PMA. In this study, we investigated the magnetic property of the [CoSiB (3, 4, 5, and 6) ${\AA}$/Pd(11, 13, 15, 17, 19,and $24{\AA})]_5$ multilayers and found the annealing temperature dependence of the magnetic property. The annealing temperature range is from room temperature to $500^{\circ}C$. The coercivity and the saturation magnetization of the CoSiB/Pd multilayer system have a close association with the annealing temperature. Moreover, the coercivity especially shows a sudden increasing at the specific annealing temperature.

A Study on the Compression Moldablity for Continuous Fiber-Reinforced Polymeric Composites ―Part 1 : The Mechanical Propertis and the Cup-type Compression Moldability for Numbers of Needling― (연속섬유강화 플라스틱 복합재료의 압축성형에 관한 연구 -제I보 : 니들펀칭횟수에 따른 물성치 및 컵형 압축성형성-)

  • 오영준;김형철;김이곤
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.31-39
    • /
    • 1999
  • Glass-fiber reinforced polymeric composites provide the desitable properties of high stiffness and strength as well as specific weight. Hence, they have become some of the most important materials in several industries. These composites can be grouped into thermoplastic and thermoset composites, with thermoplastic composites having several advantages over thermoset composites in mechanical properties and processing. As a result, the study of the material behavior and forming techniques of such composites has attracted considerable attention in recent years. When the continuous fiber-reinforced polymeric composites are molded by flow molding, the molded parts leads to be nonhomogeneity and anisotropic because of the separation and orientation of fibers. As the characteristics of the products are greatly dependent on the separation, it is very important to clarify the separation in relarion to molding conditions, fiber mat structures and mold geometry. In this study, the effects of the mold geometry and the fiber mat structure on the compression moldability are studied using the cup-type molding.

  • PDF

The Dose Characteristics of Designed Ir-192 Micro-source for Brachytherapy (근접조사용 Ir-192 마이크로선원의 디자인과 선량 특성)

  • 최태진;김진희
    • Progress in Medical Physics
    • /
    • v.14 no.2
    • /
    • pp.81-89
    • /
    • 2003
  • The dose distributions of designed Ir-192 micro-source were investigated by dose computations which were accomplished by employing shape of encapsule material and thickness of the source for self-absorption. The computation dose derived from air-kerma rate (S$_{k}$ ) and dose rate constant (Λ) includes the anisotropy of dose distribution around the source. We got the dose rate constants in a water medium is 1.154 cGy h$^{-1}$ U$^{-1}$ . The size of the source was 0.5 mm in diameter and 3.5 mm in length and it was encapsuled in 1.1 mm$\Phi$${\times}$5.5 mm of stainless steel sealed with 0.3 mm of filter thickness. The tissue dose of reference point at 1.0 cm radial distance of the source axis was delivered 1.154 Uh$^{-1}$ (1.3167${\times}$10$^{-3}$ cGy/mCi-sec) from the S$_{k}$ 4.108U/mCi of Ir-192 source. The filtration effect contributed to air-kerma strength as exponential filtering effect of 86.2% in total attenuation, but self-absorption was 88.4% from radial dose distributions. In particular, the dose attenuations showed a rapid anisotropic distributions as 56% of reference dose along to $\pm$10 degrees from the tip of source axis and 50% for of that to source-cable direction. We persist in use the large diameter of applicator will avoid the dose anisotropy by the filtered attenuation effects along the axis of Ir-192 micro-source.

  • PDF

Prediction of Stacking Angles of Fiber-reinforced Composite Materials Using Deep Learning Based on Convolutional Neural Networks (합성곱 신경망 기반의 딥러닝을 이용한 섬유 강화 복합재료의 적층 각도 예측)

  • Hyunsoo Hong;Wonki Kim;Do Yoon Jeon;Kwanho Lee;Seong Su Kim
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.48-52
    • /
    • 2023
  • Fiber-reinforced composites have anisotropic material properties, so the mechanical properties of composite structures can vary depending on the stacking sequence. Therefore, it is essential to design the proper stacking sequence of composite structures according to the functional requirements. However, depending on the manufacturing condition or the shape of the structure, there are many cases where the designed stacking angle is out of range, which can affect structural performance. Accordingly, it is important to analyze the stacking angle in order to confirm that the composite structure is correctly fabricated as designed. In this study, the stacking angle was predicted from real cross-sectional images of fiber-reinforced composites using convolutional neural network (CNN)-based deep learning. Carbon fiber-reinforced composite specimens with several stacking angles were fabricated and their cross-sections were photographed on a micro-scale using an optical microscope. The training was performed for a CNN-based deep learning model using the cross-sectional image data of the composite specimens. As a result, the stacking angle can be predicted from the actual cross-sectional image of the fiber-reinforced composite with high accuracy.