• Title/Summary/Keyword: anisotropic k-ε model

Search Result 3, Processing Time 0.016 seconds

Improved Turbulence Model on the 3 Dimensional Plane of Symmetry Flow (3차원 대칭단면 유동장에서의 개선된 난류모델)

  • Sohn C. H.
    • Journal of computational fluids engineering
    • /
    • v.2 no.2
    • /
    • pp.1-8
    • /
    • 1997
  • Two versions of anisotropic k-ε turbulence model are incorporated in the modified k-ε model of Sohn et al. to avoid the need for the experimental normal stress value in the model and applied to convergent and divergent flows with strong and adverse pressure gradients in the plane of symmetry of a body of revolution. The models are the nonlinear k-ε model of Speziale and the anisotropic model of Nisizima & Yoshizawa. All of the models yield satisfactory results for relatively complex flow on a plane-of-symmetry boundary layer. The results of the models are compared with those results of experimental normal stress value.

  • PDF

Numerical Study on the Effect of Anisotropic Turbulence Characteristics on the Droplet Behaviors for Impinging Sprays (충돌분무의 액적 거동에 미치는 비등방성 난류특성의 영향에 대한 수치해석 연구)

  • Ko G. H;Ryou H. S
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.6-15
    • /
    • 2003
  • It is an aim of this study to perform extensive numerical study for analyzing the anisotropic turbulence effects on spatial and temporal behaviors of droplet for impinging sprays. The turbulence model of Durbin is used for comparisons with the k-ε model. The turbulence-induced dispersions of droplets are considered to describe the anisotropy of turbulence effectively and spray/wall interactions are simulated using the model of Lee and Ryou. Present study investigates the overall and the internal structures of impinging diesel sprays such as spray shapes, radius and height of wall sprays, Sauter mean diameter (SMD), local droplet velocity, and local gas velocity and compared the results with experimental data by two adopted turbulence models. When the anisotropy effect of turbulence is included, better predictions for both gas and droplet tangential velocities are obtained, compared to the k-ε model. It is concluded that anisotropic effect of turbulence should be considered for simulating impinging diesel sprays.

PERFORMANCE ANALYSIS OF THE TURBULENCE MODELS FOR A TURBULENT FLOW IN A TRIANGULAR ROD BUNDLE

  • In W.K;Chun T.H;Myong H.K
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.63-66
    • /
    • 2005
  • A computational fluid dynamics(CFD) analysis has been made for fully developed turbulent flow in a triangular bare rod bundle with a pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel. The nonlinear quadratic κ-ε models by Speziale[1] and Myong-Kasagi[2] predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic k-ε models by Shih et al.[3] and Craft et al.[4] showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model by Launder et al.[5} appeared to over predict the turbulence anisotropy in the rod bundle.