• Title/Summary/Keyword: anionic organic material

Search Result 8, Processing Time 0.029 seconds

Effect of White Water Quality on AKD Sizing of Linerboard (백수의 수질에 따른 라이너지의 AKD 사이징)

  • Lee, Hak-Lae;Seo, Man-Seok;Shin, Jong-Ho;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.9-15
    • /
    • 2006
  • Neutral sizing is required for linerboard to solve the troubles in strength and process caused by recycled raw materials. AKD sizing efficiency can be influenced by process condition like white water quality, fines retention and so on. Therefore, this study was aimed to evaluate sizing performance of general and fast cure type AKDs using process water obtained from linerboard mill. To evaluate effect of process water quality on AKD sizing, white water was diluted with tap water at the different dilution ratios and UKP slurry was sized using the prepared water. Also, effects of inorganic and organic ion material on sizing were examined. When white water was used for stock forming, UKP sheet showed very low sizing degree. Sizing degree of sheet was increased with increase of dilution ratio because water quality was improved. Especially anionic organic material had a greater influence on AKD sizing than inorganic material. When white water quality was deteriorated, fast cure type AKD showed superior sizing performance to general type AKD.

The effect of surfactants on the dispersion of Multi-walled carbon nanotube in organic solvent (계면활성제 종류에 따른 Mullti-walled carbon nanotube의 유기용매 분산 효과)

  • Lee, Bong-Seok;Kim, Won-Jung;Kim, Tea-Young;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.203-204
    • /
    • 2008
  • Using various surfactants, multi-walled carbon nanotube (MWNT) was dispersed in organic solvent, isopropylalcohol(IPA). To refine the MWNT and give the functional group, MWNT was treated with sulfuric acid/nitric acid(v/v=3/1). The cationic, nonionic and anionic surfactants were used as MWNT dispersion agents in the organic solvent. Dispersion effect of various surfactants was observed by optical microscope and HR-TEM. Surface resistivities of MWNT dispersions were measured after coating on PET film. MWNT was dispersed well by poly vinyl pyrrolidone(PVP), nonionic surfactant.

  • PDF

Synthesis of N-Alkylated 4-Fluoro-5-phenylpyrrole-2-carboxylate via Isolable Pyrroline Ionic Intermediates

  • Kim, Sung-Kwan;Jun, Chang-Soo;Kwak, Kyung-Chell;Park, Kwang-Yong;Chai, Kyu-Yun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2324-2328
    • /
    • 2007
  • Organic fluorine chemistry produces many useful products. This paper elucidates the reaction of ethyl-4,4- difluoro-2-iodo-5-oxo-5-phenylpentanoate (2) with primary amines in a one-pot scheme. The reaction produced a series of β-fluoropyrrole derivatives at ambient temperatures. In this reaction, the less bulky the primary amine the higher was the resultant yield. When (2) and aqueous methylamine (40%) were allowed to react below 0 oC, 5-(ethoxycarboxyl)-1-methyl-3,3-difluoro-2-hydroxy-2-phenylpyrrolidine, an intermediate molecule for 2-ethyl-4-flouro-1-methyl-5-phenylpyrrole-2-carboxylate (5), was isolated first. Then, (5) reacted with hydroperchloric acid and acetic anhydride to form 5-(ethoxycarboxyl)-1-methyl-3,3-difluoro-2- phenylpyrrolinium perchlorate (6), which was converted to 2-ethyl-4-flouro-1-methyl-5-phenylpyrrole-2- carboxylate gradually in the presence of a base. Our experiments demonstrate that the formation of 2-ethyl-4- flouro-1-methyl-5-phenylpyrrole-2-carboxylate occurs via both one-pot schemes and stepwise pathways, depending on the reaction conditions. The isolation and characterization of the isolated intermediate (6) suggest an anionic pathway for this reaction.

Rational Selection of Surfactant in Surfactant-Based Remediation (오염복원에 있어서의 계면활성제의 선택)

  • ;;Robort D. Cody
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.417-422
    • /
    • 2001
  • Sutfactants may be used in remediation of subsoil and aquifer contaminated with hydrophobic compounds. The objectives of this study were to select potentially suitable sUlfactants that solubilize toluene present as a contaminant and to determine the effectiveness of toluene removal from Ottawa sand by the selected surfactants. Material used as the model soil was Ottawa sand and the organic used as model contaminant was toluene. Used experimental methods were separatory funnel experiment and shaker table agitation/centrifugation experiments. Based on the experimental results, the following conclusions were drawn; t) In the surfactant selection, six different surfactants were chosen based on surfactant types, toxicity, and water solubility. These six were focused into two on the basis of HLB and surface tension study, separatory funnel experiment, shaker table and centrifugation experiments. The two most suitable surfactants were Sandopan JA36 (an anionic surfactant), and Pluronic L44 (a non-ionic surfactant). 2) In the shaker table agitation and centrifugation experiments, the highest recovery of the toluene was 96% which was obtained with one surfactant wash plus two water rinses using an anionic surfactant (Sandopan JA36).

  • PDF

Effect of Slurry Characteristics on Nanotopography Impact in Chemical Mechanical Polishing and Its Numerical Simulation (기계.화학적인 연마에서 슬러리의 특성에 따른 나노토포그래피의 영향과 numerical시뮬레이션)

  • Takeo Katoh;Kim, Min-Seok;Ungyu Paik;Park, Jea-Gun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.63-63
    • /
    • 2003
  • The nanotopography of silicon wafers has emerged as an important factor in the STI process since it affects the post-CMP thickness deviation (OTD) of dielectric films. Ceria slurry with surfactant is widely applied to STI-CMP as it offers high oxide-to-nitride removal selectivity. Aiming to control the nanotopography impact through ceria slurry characteristics, we examhed the effect of surfactant concentration and abrasive size on the nanotopography impact. The ceria slurries for this study were produced with cerium carbonate as the starting material. Four kinds of slurry with different size of abrasives were prepared through a mechanical treatment The averaged abrasive size for each slurry varied from 70 nm to 290 nm. An anionic organic surfactant was added with the concentration from 0 to 0.8 wt %. We prepared commercial 8 inch silicon wafers. Oxide Shu were deposited using the plasma-enhanced tetra-ethyl-ortho-silicate (PETEOS) method, The films on wafers were polished on a Strasbaugh 6EC. Film thickness before and after CMP was measured with a spectroscopic ellipsometer, ES4G (SOPRA). The nanotopogrphy height of the wafer was measured with an optical interferometer, NanoMapper (ADE Phase Shift)

  • PDF

A New Alternative Hole-transporting Layer to PEDOT:PSS for Realizing Highly Efficient All Solution-processable PLEDs

  • Kang, Beom-Goo;Kang, Hong-Kyu;Lee, Kwang-Hee;Lee, Chang-Lyoul;Lee, Jae-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.362-363
    • /
    • 2012
  • A new cross-linkable polymer, cross-linked d-PBAB, which has the triphenylamine as the hole transporting moiety and ethynyl group as the thermal cross-linker is firstly synthesized by the combination of anionic polymerization and deprotection process. The thermal cross-linking reaction was performed at $240^{\circ}C$ for 50 min and cross-linked d-PBAB layer showed smooth surface and is not soluble at organic solvent under spin-coating of emitting layer (EML). The solution-processed PLED which was fabricated with cross-linked d-PBAB as HTL showed approximately two times higher Lmax and four times higher LEmax than those obtained from PLED with PEDOT:PSS as the HTL. These result is ascribed to better ability of cross-linked d-PBAB to block electrons and to prevent exciton-quenching than those of PEDOT : PSS at the EML interface. This results strongly suggested that cross-linked d-PBAB can be a promising material to replace conventional PEDOT : PSS. It can be suspected that PLEDwith cross-linked d-PBAB would show longer lifetime compared with that of PLED with PEDOT : PSS, and thus further studies are under investigation.

  • PDF

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.

Change of Nutrition Loss of Long-term Application with Different Organic Material Sources in Upland Soil (유기물원이 다른 퇴비연용 밭토양에서 양분유실량 변화)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Kim, Jae-Duk;Han, Sang-Su;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.432-445
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of nutrition loss in upland soils. Field experiments were conducted in the loam and sandy loam soils, while the clay loam and sandy loam soils were used for laboratory experiments. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The loss of nutrients in the form of cation and anion by run-off water increased with the increase of compost application rate. Compared with bare soils, maize cultivation decreased the nutrient loss by run-off from soils by 43% in anionic form and 32% in cationic form. Amount of cation loss were ordered $K^+$ > $Ca^{2+}$ > $Na^+$ > $Mg^{2+}$ > $NH_4{^+} $ and that of anion loss were ordered $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^-$ > $PO_4{^{3-}}$. Nutrient loss of sand loam soil in the cation and anion by percolation water increased 1.7 times compared with loam soil. $NO_3{^-}-N$ contents in percolated water were high at the initial stage after compost application, and the amounts were higher in sandy loam soil than loam soil. The maize cultivation also decreased the $NO_3{^-}-N$ contents in percolated water by 82% in loam soil, and 58% in sand loam soil. Soil pH of composts determined by laboratory incubation test increased pH 6.1~6.8 application with poultry and cow manure compost but application with human excrement sludge decreased pH 4.5~4.7. Soil EC were increased initially composts application and decreased up to 2 weeks, thereafter kept a certain level. Nitrogen mineralization rates of composts determined by laboratory incubation test at $25^{\circ}C$ were 39~76% in sandy loam soil, and 16~48% in clay loam soil.

  • PDF