• Title/Summary/Keyword: anion-exchange

Search Result 685, Processing Time 0.029 seconds

Isolation of Polysaccharides Modulating Mouse’s Intestinal Immune System from Peels of Citrus unshiu (귤피로부터 분리한 마우스의 장관면역 활성 다당류의 검색)

  • Yang, Hyun-Seuk;Yu, Kwang-Won;Choi, Yang-Mun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1476-1485
    • /
    • 2004
  • Of solvent-extracts prepared from the 90 kinds of Korean traditional tea and rice gruel plants, cold-water extract from peels of Citrus unshiu (CUI-0) showed the most potent intestinal immune system modulating activity through Peyer’s patch whereas other extracts did not have the activity except for cold-water extracts of Laminaria japonica, Polygonatum japonicum, Poncirus trifoliata, and hot-water extracts of Gardenia jasminoides, Lycium chinense having intermediate activity. CUI-0 was further fractionated into MeOH-soluble fraction (CUI-1), MeOH insoluble and EtOH-soluble fraction (CUI-2), and crude polysaccharide fraction (CUI-3). Among these fractions, CUI-3 showed the most potent stimulating activity for the proliferation of bone marrow cells mediated by Peyer’s patch cells, and contained arabinose, galacturonic acid, galactose, glucose, glucuronic acid and rhamnose (molar ratio; 1.00:0.53:0.45:0.28:0.28:0.19) as the major sugars, and a small quantity of protein (9.4%). In treatments of CUI-3 with pronase and periodate (NaIO₄), the intestinal immune system modulating activity of CUI-3 was significantly reduced, and the activity of CUI-3 was affected by periodate oxidation particularly. The potently active carbohydrate-rich fraction, CUI-3IIb-3-2 was further purified by anion-exchange chromatography on DEAE-Sepharose FF, Sepharose CL-6B and Sephacryl S-200. CUI-3IIb-3-2 was eluted as a single peak on HPLC and its molecular weight was estimated to be 18,000 Da. CUI-3IIb-3-2 was consisted mainly of arabinose, galactose, rhamnose, galacturonic acid and glucuronic acid (molar ratio;1.00:0.54:0.28:1.45:0.63) in addition to a small amount of proteins (3.2%). In addition, CUI-3IIb-3-2 showed the activity only through Peyer’s patch cells, but this fraction did not directly stimulate proliferation of bone marrow cells. It may be concluded that intestinal immune system modulating activity of peels from C. unshiu is caused by pectic polysaccharides having a polygalacturonan moiety with neutral sugars such as arabinose and galactose.

Measurement of Phosphorus Buffering Power in Various Soils using Desorption Isotherm (탈착 등온식을 이용한 토양 중 인산 완충력 측정)

  • Lee, Jin-Ho;Doolittle, James J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • Phosphorus desorption study is essential to understanding P behavior in agricultural and environmental soils because phosphorus is considered as two different aspects, a plant nutrient versus an environmental contaminant. This study was conducted to determine soil P buffering power related to P desorption quantity intensity (Q/I) parameters, $Q_{max}$(an index of P release capacity) and $l_0$(an index of the intensity factor), and to investigate the characteristics of relationship between the P desorption Q/I parameters and the soil properties. Soil samples were prepared with treatments of 0 and $100mg\;P\;kg^{-1}$ applied as $KH_2PO_4$ solution. The P desorption Q/I curves were obtained by a procedure using anion exchange resin beads and described by an empirical equation ($Q=aI^{-1}+bln(I+1)+c$). The P desorption Q/I curves for the high available P (${\g}20mg\;kg^{-1}$ of Olsen P) soils were characteristic concave trends with or without soil P enrichment, whereas for the low available P (${\lt}20mg\;kg^{-1}$ of Olsen P) soils, the anticipated Q/I concave curves could not be obtained without a proper amount of P addition. When the soils were enriched in phosphates, the values of desorbed solid phase labile P and solution P, such as $Q_{max}$ and $I_0$ respectively, were increased, but the ratio of $Q_{max}$ versus $I_0$ was decreased. Thus, the slope of desorption Q/I curve represented as phosphorus buffering power, $|BP_0|$, is decreased. The $|BP_0|$ values of the high available P soils ranged between 48 and $61L\;kg^{-1}$ in the P untreated samples and between 18 and $44L\;kg^{-1}$ in the P enriched samples. Overall $|BP_0|$ values of both low and high available P soils treated with $l00mg\;P\;kg^{-1}$ ranged between 14 and $79L\;kg^{-1}$. The $Q_{max}$, values ranged between 71.4 and $173.1mg\;P\;kg^{-1}$, and the lo values ranged between 0.98 and $3.82mg\;P\;L^{-1}$ in the P enriched soils. The $Q_{max}$ and $I_0$ values that control the P buffering power may be not specifically related to a specific soil property, but those values were complicatedly related to soil pH, clay content, soil organic matter content, and lime. Also, phosphorus release activity, however, markedly depended on the desorbability of the applied P as well as the native labile P.

Partial Purification of OsCPK11 from Rice Seedlings and Its Biochemical Characterization (벼 유식물에서 OsCPK11의 부분 정제 및 생화학적 특성 규명)

  • Shin, Jae-Hwa;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Calcium is one of the important secondary signaling molecules in plant cells. Calcium-dependent protein kinases (CDPK)-the sensor proteins of Ca2+ and phosphorylating enzymes-are the most abundant serine/threonine kinases in plant cells. They convert and transmit signals in response to various stimuli, resulting in specific responses in plants. In rice, 31 CDPK gene families have been identified, which are mainly involved in plant growth and development and are known to play roles in response to various stress conditions. However, little is known about the biochemical characteristics of CDPK proteins. In this study, OsCPK11-a CDPK in rice-was partially purified, and its biochemical characteristics were found. Partially purified OsCPK11 from rice seedlings was obtained by three-step column chromatography that involved anion exchange chromatography consisting of DEAE, hydrophobic interaction chromatography consisting of phenyl-Sepharose, and gel filtration chromatography consisting of Sephacryl-200HR. An in vitro kinase assay using partially purified OsCPK11 was also performed. This partially purified OsCPK11 had a molecular weight of 54 kDa and showed a strong hydrophobic interaction with the hydrophobic resin. In vitro kinase assay showed that the OsCPK11 also had Ca2+-dependent autophosphorylation activity. The OsCPK11 phosphorylated histone III-S, and the optimum pH for its kinase activity was found to be 7.5~8.0. The native OsCPK11 shared several biochemical characteristics with recombinant OsCPK11 studied previously, and both had Ca2+-dependent autophosphorylation activity and favored histone III-S as a substrate for kinase activity, which also had a Ca2+-dependence.

Degradation of Nucleotides and Their Related Compounds in Sea Foods during Processing and Storage VI. Degradation of Nucleotides and Their Related Compounds in File Fish Navodon modestus and Yellowfin Puffer Fugu xanthopterum Muscle during Drying (수산식품(水産食品)의 가공(加工) 및 보장중(保藏中)의 핵산관련물질(核酸關聯物質)의 변화(變化)에 관한 연구(硏究) 제6보 말쥐치 및 까치복 건조중(乾燥中)의 핵산관련물질(核酸關聯物質)의 변화(變化))

  • Lee, Eung-Ho;Chung, Seung-Yong;Kim, Yong-Gun;Yang, Sung-Tack;Kim, Soo-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.177-184
    • /
    • 1974
  • File fish Navodon modestus was dehydrated in cabinet type hot-sir drier at $48-50^{\circ}C$ for 11 hours and also yellowfin puffer Fugu xanthopterum was dried in open air at $26-28^{\circ}C$ for 30 hours. Nucleotides and their related compounds were collected by extraction with cold perchloric acid and their amounts were determined by anion exchange column chromatography. The contents of ADP, IMP, ATP and hypoxanthine in fresh file fish muscle were 22.9, 12.1, 4.9, and 3.2 ${\mu}mole/g,$ dry wt. respectively. AMP and inosine were 0.9 ${\mu}mole/g,$ dry wt. equally. In fresh yellowfin puffer muscle, the contents of ADP, ATP, AMP, inosine and hypoxanthine were 25.6, 2.4, 1.6, 0.3, 0.6, and 0.4 ${\mu}mole/g,$ dry wt. respectively. In the case of file fish, ADP and ATP tended to degrade rapidly during hot-air dehydration. The contents of IMP were decreased slightly while AMP and inosine were increased. And another case of yellowfin puffer, ADP also tended to degrade rapidly during sun drying while AMP, IMP, inosine and hypoxanthine were increased. Especially, in both case of file fish and yellowfin puffer, inosine was increased twenty five and thirty five times during drying respectively.

  • PDF

Synthesis and Characterization of Layered Copper Hydroxides in Highly Concentrated Solution (고농도 용액에서 Layered Copper Hydroxides의 합성 및 특성)

  • Nam, Dae-Hyean;Choi, Choong-Lyeal;Kim, Kwang-Seop;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.872-879
    • /
    • 2010
  • Layered copper hydroxides [LCHs, $Cu_2(OH)_3{\cdot}NO_3$] has the agricultural potentials as a fungicide because of its high crystallinity, excellent anion exchange capacity, and its regular layered particle size. The study, for the first time, has synthesized LCHs in highly concentrated solution and evaluated its physicochemical properties including the crystallinity and suspension stability. Optimal synthetic condition of LCHs was determined by crystallinity and stability of suspension as follow; 1) concentrations of $Cu(NO_3)_2$ and NaOH solutions were 3.0 M respectively, 2) reaction temperature and solution pH were $25^{\circ}C$ and 6.0, respectively, and 3) aging time after reaction was 2hr. Crystallinity of LCHs enhanced with increase in pH up to 9.0. Whereas, stability of suspension was decrease by increase in crystal size. Especially, increase in reaction temperature decreased stability of suspension. XRD patterns and SEM images exhibited that LCHs had regular layered particle size with 0.2~0.8 ${\mu}m$ and high crystallinity in optimal synthetic condition. The particle size was increased with increase in reaction temperature and pH. These results showed that LCHs synthesized in highly concentrated solution exhibited high stability of suspension as well as high crystallinity suitable to their potential as a fungicide.