• Title/Summary/Keyword: animal fat/oil

Search Result 273, Processing Time 0.029 seconds

Current Trend and Perspective of Research and Development on Biologically - Active Livestock Products (생리활성을 강화한 기능성 축산식품의 연구개발 동향과 전망)

  • 이복희
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.257-271
    • /
    • 1996
  • Livestock products like meat, milk and egg have been principal food sources for human beings since the historic periods of time. Nowadays consumption of these food items have been avoided due to its high contents of SFA, cholesterol and total fat which are major culprits of chronic adult diseases causing major deaths of people. However, the relationship between livestock products and diseases is not always true because the amounts of fat and cholesterol and types of fatty acids in meat and meat by-products depend on the part of the meat and types of animals. Although meat intakes do not always cause mai or adult diseases, still the developmental necessity does exist for animal foods equipped with biologically active properties, which in turn can improve nutritional status and health more than ever Meat with high protein lean part and low fat can be produced by applying synthetic somatotropin and beta-adrenergic agonists like clenbuterol, cimaterol etc. during breeding. This application brings benefits like higher growth rate, lower fat contents and improve feed efficiency ratios. Meats fortified with long chain PUFA($\omega$-3 fatty acids) can also be produced by modulating feed composition.Egg Products have faced the reduced sales annually because of its high cholesterol contents. Recently brand eggs fortified with special nutrients or chemical components having functional proper ties in the human body system are very popular Research Interests have been focused on eggs with low cholesterol and high omega-3 fatty acids. Low cholesterol eggs and high omega-3 eggs can be produced in several different ways, but popular way to increase is feeding the feeds with different oil sources containing high omega-3 and 6 fatty acids such as fish oil, perilla oil, linseed oil and lecithin etc. But proper compositon of feed formula should be found and economically beneficial. Brand eggs fortified with vitamin, mineral, unknown growth factors are also manufactured. Low cholesterol and high $\omega$-3 PUFA milk are marketed recently Cholesterol removal technology is not completely established and has several limitations to be overcome. Milk fortified with $\omega$-3 fatty acids is made by incorporating high &13 fatty acid foods in feed despite of extraordinary way of fatty acid metabolism In cow. All these biologically active products will be very beneficial and useful for human consumption when limitations of manufacturing technology such as safety and lowered sensory qualities are resolved. Furthermore, thorough and precise tests and quality control for these products should be performed to ensure the effectiveness and usefulness in terms of improving health and nutritional status in general. However one caution should be pointed out to lay people informing that these items are nothing but a food and not panacea. Therefore, it is important to remember that the only way of maintaining good health is absolutely through consuming balanced diet.

  • PDF

The Effect of Soybean Oil and Waste Chicken Oil Mixing Ratio on Biodiesel Characteristics (대두유와 폐계유의 혼합비가 바이오디젤 특성에 미치는 영향)

  • Kwack, Jong Won;Kim, Tae Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.261-267
    • /
    • 2017
  • The interest in biodiesel is increasing rapidly. As a result, the price of vegetable oil that is used as a raw material for biodiesel is skyrocketing. Studies of biodiesel using animal waste as a means of solving these problems are underway. Biodiesel produced from animal fat contains considerably more saturated fatty acids than that produced from vegetable oil. In addition, it has a high cetane number and a high heating value. On the other hand, the fluidity decreases at lower temperatures because of the large amount of saturated fatty acids. For the biodiesel production, waste chicken oil and soybean oil were first purified. The raw materials were mixed at various ratios from 1:9 to 9:1. The methanol / oil molar ratio was also changed from 7 mol to 15 mol. The entire reaction time was one hour. The results showed that the optimal mixing ratio of soybean oil to waste chicken oil was 3:7, and the optimal methanol / oil molar ratio was 13. Moreover, the BD yield was 90.2%, the FAME content was 96.6%, and the LAME content was 4.1%. This result satisfied the Korea Industrial Standard (KSM2413).

Effects of Palm Kernel Cake on Performance and Blood Lipids in Rats

  • Loh, T.C.;Foo, H.L.;Tan, B.K.;Jelan, Z.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1165-1169
    • /
    • 2002
  • Palm kernel cake (PKC), a by-product of oil palm seeds after extraction of their oil. The aim of this study was to investigate the effects of different levels of PKC on growth performance and blood lipids in rats. A total of 64 Sprague-Dawley (8 weeks of age) male rats were assigned individually to four treatments with different levels of PKC in the diet: 0, 15, 20 and 25%. No differences (p<0.05) were found in daily feed intake (6-8 g/day), body weight, growth rate and epididymal fat weight for all the dietary groups. Plasma protein and very low density lipoprotein (VLDL) triacylglycerol (TG) were higher (p<0.05) for 20% PKC fed rats than the control rats. Conversely, the plasma cholesterol and TG and VLDL-phospholipid (PL) concentrations of the control rats were higher (p<0.05) than those of PKC fed rats. The VLDL-protein, total cholesterol, free cholesterol (FC) and cholesteryl ester (CE) were not significantly different (p>0.05) among the treatment groups. Rats fed PKC had greater (p<0.05) ratios of total surface to core lipid components [(FC+PL)/(CE+TG)] than control rats. The results reflect dissimilarities of VLDL particle size between PKC treatment and control rats, where the plasma of the PKC treated rats contained more lipid rich VLDL. In conclusion, there was no adverse effect on growth performance when inclusion of PKC up to 25%. However, fibre content may affect the plasma lipid concentrations.

Effects of pH on the Activity of Lipase Isolated from Milk Fat Globules (유지방구로부터 분리한 Lipase의 활성에 미치는 pH의 영향)

  • 김거유
    • Food Science of Animal Resources
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2000
  • Effects of Ph on the activity of lipase isolated from milk fat globules were investigated, using coconut oil and homogenized milk as substrate. With buttermilk as an enzyme source for coconut oil and homogenized milk substrates bell-shaped curve was observed at $37^{\circ}C$, having the highest activity at pH 9.5. However, lipase activity at $0^{\circ}C$ continuously increased up to pH 10.0. With the purified lipase for homogenized milk substrate, the bell -shaped curve and the highest activity were observed at $37^{\circ}C$ and pH 9.0, respectively. Lipase activity at $0^{\circ}C$ increased up to pH 10.0. The addition of bovine serum albumin to the coconut oil shifted the optimum pH to pH 9.5 and the activity remarkably declined at pH 10.0. The effect of pH on the stability of purified lipase was depending on the temperature. Wehn the lipase kept at $37^{\circ}C$ for 20 minutes, it's activity remarkably declined as pH increased: the activity at pH 10.0 was declined by 13% of that pH 8.5. However, when the lipase kept at $4^{\circ}C$ for 60minutes, the activity was stable within the range of pH 7.5 to 10.0.

  • PDF

Improvement of Low-temperature Fluidity of Biodiesel from Vegetable Oils and Animal Fats Using Urea for Reduction of Total Saturated FAME (요소 이용 포화도 저감을 통한 동.식물성 바이오디젤의 저온유동성 개선)

  • Lee, Yong-Hwa;Kim, Kwang-Soo;Jang, Young-Seok;Shin, Jung-Ah;Lee, Ki-Teak;Choi, In-Hu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • The compositions of saturated and unsaturated fatty acids in biodiesel feedstocks are important factors for biodiesel properties including low-temperature fluidity and oxidative stability. This study was conducted to improve low-temperature fluidity of biodiesel by reducing total saturated FAME (fatty acid methyl ester) in animal fat biodiesel fuels via urea-based fractionation and by mixing plant biodiesel fuels (rapeseed-FAME, waste cooking oil-FAME, soybean-FAME, and camellia-FAME) with enriched-polyunsaturated FAME derived from animal fat biodiesel. Our results showed that the reduction of total saturated FAME in animal fat biodiesel lowered CFPP (Cold Filter Plugging Point) to $-15^{\circ}C$. Mixing plant biodiesel fuels with the enriched-polyunsaturated FAME derived from animal fat biodiesel lowered CFPP of blended biodiesel fuels to $-10{\sim}-18^{\circ}C$.

Development of Plastic/Gelatin Bilayer Active Packaging Film with Antibacterial and Water-Absorbing Functions for Lamb Preservation

  • Shijing Wang;Weili Rao;Chengli Hou;Raheel Suleman;Zhisheng Zhang;Xiaoyu Chai;Hanxue Tian
    • Food Science of Animal Resources
    • /
    • v.43 no.6
    • /
    • pp.1128-1149
    • /
    • 2023
  • In order to extend the shelf life of refrigerating raw lamb by inhibiting the growth of microorganisms, preventing the oxidation of fat and protein, and absorbing the juice outflow of lamb during storage, an active packaging system based on plastic/gelatin bilayer film with essential oil was developed in this study. Three kinds of petroleum-derived plastic films, oriented polypropylene (OPP), polyethylene terephthalate, and polyethylene, were coated with gelatin to make bilayer films for lamb preservation. The results showed significant improvement in the mechanical properties, oxygen, moisture, and light barriers of the bilayer films compared to the gelatin film. The OPP/gelatin bilayer film was selected for further experiments because of its highest acceptance by panelists. If the amount of juice outflow was less than 350% of the mass of the gelatin layer, it was difficult for the gelatin film to separate from lamb. With the increase in essential oil concentration, the water absorption capacity decreased. The OPP/gelatin bilayer films with 20% mustard or 10% oregano essential oils inhibited the growth of bacteria in lamb and displayed better mechanical properties. Essential oil decreased the brightness and light transmittance of the bilayer films and made the film yellow. In conclusion, our results suggested that the active packaging system based on OPP/gelatin bilayer film was more suitable for raw lamb preservation than single-layer gelatin film or petroleum-derived plastic film, but need further study, including minimizing the amount of essential oil, enhancing the mechanical strength of the gelatin film after water absorption.

A Study on the Quality Characteristic of Power Bio-Fuel Oil for Alternative Fuel oil (중유 대체연료로서 발전용 바이오중유의 품질특성 연구)

  • Jang, Eun-Jung;Park, Jo-Yong;Min, Kyung-Il;Yim, Eui-Soon;Ha, Jong-Han;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.562-571
    • /
    • 2014
  • In these days, many countries carry out many renewable energy policies to increase the renewable energy portion and to reduce the GHG(Green House Gas). In Korea, RPS(Renewable Portfolio Standards) focused on over 500MW power producers is conducting. And they are using the bio-fuel oil to meet their RPS quota. The oil is a mixture of animal and vegetable fat or fatty acid ester of them and should satisfy some specifications to use the power generation such as viscosity, pour point, acid number. Depends on the raw materials, quality characteristics of power bio-fuel oil are changed. By adding the power bio-fuel oil, pour point, density, sulfur content and viscosity are decreased and acid number, iodine number, oxygen content are increased. In this study, we test the quality characteristic of power bio-fuel oil and the property changes by the blending ratio of power bio-fuel oil & conventional fuel oil.

Incorporation of $Acetate-1-^{14}C$ into Lipid of Rats Fed High Fat Diet (고지방식이(高脂肪食餌)에 따른 $Acetate-1-^{14}C$이 흰쥐의 체내지질(體內脂質)에의 편입도(編入度))

  • Rhee, Soon-Jae;Park, Hong-Koo
    • Journal of Nutrition and Health
    • /
    • v.17 no.2
    • /
    • pp.126-136
    • /
    • 1984
  • The long-term effects of vegetable and animal high fat diet on the lipid metabolism were investigated in male weaning rats. The rats were fed one of four semipurified diet ad libitum : control diet supplied 12% of calories as fat(control group), low fat diet supplied 3% of calories as fat (3% F group), 45% corn oil diet supplied 45% calories from corn oil (45% C group) and 45% butte. fat diet supplied 45% calories from butter fat (45 % B group). Incorporation of $acetate-1-^{14}C$ into lipid of liver, serum and adipose tissue as well as exhalation of $^{14}CO_{2}$ from $acetate-1-^{14}C$ were observed in rats fed for 4,8 and 12 weeks. The weigh of epididymal adipose tissue of rats, fed 45% corn oil and 45% butter fat . from 4 weeks to 8 weeks were higher, but not different at 12 weeks, compared with those of control group. The weight of abdominal adipose tissue appeared to be similar to those of epididymal adipose tissue. Incorporations of $acetate-1-^{14}C$ into lipid of liver were remarkably decreased in high fat diet groups, especially in 45% C group, but in 3% F group were increased more than those of control group. Incorporations of $acetate-1-^{14}C$ into epididymal adipose tissue in 3% F, 45% C and 45% B group at 8 weeks were remarkably increased but not different at 12 weeks, compared with those of control group. The incorporation of {acetate-1-}^{14}C into abdominal adipose tissue appeared to be similar to those of epididymal adipose tissue. Incorporations of $acetate-1-^{14}C$ into lipid of serum in 45% C and 45% B group were reduced reasonably at 4 and 8 weeks of diet as compared with those of control group. Exhalation of $^{14}CO_{2}$ was increased to maximum level at 10 minutes after injection of $acetate-1-^{14}C$. Expiration of $^{14}CO_{2}$ in 45% C and 45% B group were higher than those in 3% F and control group for initial 5 minutes after injection, but expirations of $^{14}CO_{2}$ did not have significant difference among groups of diet since 10 minutes.

  • PDF

Low lysine stimulates adipogenesis through ZFP423 upregulation in bovine stromal vascular cells

  • Joseph F., dela Cruz;Kevin Wayne Martinez, Pacunla;Seong Gu, Hwang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1173-1183
    • /
    • 2022
  • Adipogenesis is a complex process comprising commitment and a differentiation stages. Through research, many different transcriptional factors were found to mediate preadipocyte commitment and differentiation. Lysine has a potential of regulating the commitment and differentiation of preadipocytes. In the present study, intramuscular stromal vascular cells (SVC) isolated from Hanwoo beef cattle were used to elucidate the effects of low lysine level on adipogenesis. SVC were isolated and incubated with various concentrations of lysine (0, 37.5, 75, 150 and 300 µg/mL). No significant difference were observed in the proliferation of SVC after 24 and 48 h of incubation with different concentration of lysine. On preadipocyte determination, reducing the level of lysine significantly increased the expression of preadipocyte commitment gene Zinc finger protein 423 and Preadipocyte factor-1. Upon differentiation, Oil Red O staining revealed that lipid accumulation and triglyceride content significantly increased with the decreasing lysine levels in the media. Expression levels of peroxisome proliferator-activated receptor-γ, CCAAT enhancer binding protein-α, sterol regulatory element binding protein-1c, Fatty Acid Binding Protein 4 and stearoyl CoA desaturase were upregulated by the decreased level of lysine. These data suggest the potential mechanism of action for the improved preadipocyte commitment and adipocyte differentiation in bovine intramuscular SVC upon treatment with low levels of lysine. These findings may be valuable in developing feed rations that promote deposition of intramuscular fat in beef cattle through lysine level modification.

Meat Quality, Digestibility and Deposition of Fatty Acids in Growing-finishing Pigs Fed Restricted, Iso-energetic Amounts of Diets Containing either Beef Tallow or Sunflower Oil

  • Mitchaothai, J.;Everts, H.;Yuangklang, C.;Wittayakun, S.;Vasupen, K.;Wongsuthavas, S.;Srenanul, R.;Hovenier, R.;Beynen, A.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.1015-1026
    • /
    • 2008
  • The influence of dietary beef tallow (BT) versus sunflower oil (SO) on meat quality and apparent digestibility and deposition of individual fatty acids in the whole carcass was investigated in pigs fed diets containing either BT or SO. The diets contained equal amounts of energy in the form of the variable fats and were fed on an iso-energetic, restricted basis. Crude fat in the SO diet was better digested (p<0.001) than in the BT diet. The dietary fat type had no effect on growth performance, physical properties of the carcass and meat quality. The pigs fed the BT diet showed lower (p<0.001) apparent digestibilities for palmitic and linoleic acid, but those of oleic and ${\alpha}$-linolenic acid were not affected. The ratio of deposition in the carcass to intake of digestible fatty acids for the whole feeding period was decreased (p<0.01) for oleic and linoleic acid in pigs fed the SO diet. The pigs fed the SO diet instead of the BT diet had a lower (p<0.05) deposition:intake ratio for mono-unsaturated fatty acids. The calculated minimum de novo synthesis of saturated fatty acids was increased for the SO diet, but that of mono-unsaturated fatty acids was not different. In conclusion, the iso-energetic replacement of BT by SO had a marked impact on the fatty acid composition of tissues, but did not affect carcass and meat quality traits in spite of the marked difference in the deposition of linoleic acid in adipose tissues, loin muscle and the whole body. In addition, it became clear that the type of dietary fat had marked, specific effects on the synthesis and oxidation of fatty acids.