• Title/Summary/Keyword: angular weighting

Search Result 15, Processing Time 0.031 seconds

A local path planning algorithm for free-ranging mobil robot (자율 주행로봇을 위한 국부 경로계획 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.88-98
    • /
    • 1994
  • A new local path planning algorithm for free-ranging robots is proposed. Considering that a laser range finder has the excellent resolution with respect to angular and distance measurements, a simple local path planning algorithm is achieved by a directional weighting method for obtaining a heading direction of nobile robot. The directional weighting method decides the heading direction of the mobile robot by estimating the attractive resultant force which is obtained by directional weighting function times range data, and testing whether the collision-free path and the copen parthway conditions are satisfied. Also, the effectiveness of the established local path planning algorithm is estimated by computer simulation in complex environment.

  • PDF

A New Acceleration Method of Additive Angular Dependent Rebalance with Extrapolation for Discrete Ordinates Transport Equation

  • Park, Chang-Je;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.314-322
    • /
    • 2002
  • A new extrapolation method is developed and applied to the additive angular dependent rebalance (AADR) acceleration for discrete ordinates neutron transport calculations. With this extrapolation, the convergence of AADR solution for distinct discretizations between the high- order and low-order equations is remarkably improved and thus the “inconsistent discretization problem” is resolved. Fourier analysis is also performed to find the optimal extrapolation and weighting parameters, which give the smallest spectral radius. The numerical tests demonstrate that the AADR with extrapolation works well as predicted by the Fourier analysis.

An angular spectral inverse scattering technique with series-expanded field in dielectric object (유전체내의 전계를 급수전걔로 표시한 각스펙트럼 영역의 역산란 방법)

  • Kim, Ha-Chul;Son, Hyon;Choi, Hyun-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1317-1324
    • /
    • 1996
  • An angular spectral inverse technique, applying the moment method procedure with a series expansion for the induced field in each enlarged cell, is suggested to reconstruct permittivity profiles of inhomogeneous dielectric objects and to reduce the ill-posedness inherent to inverse scattering problems. The angular spectral inverse scattering using the pulse basis function in enlarging the scatterer has the ill-posedness due to the input data of higher spectra. To reduce the number of higher spectra, enlarging the cell size and averaging over the cell with a suitable weighting function are found to play improtant roles for the reduction of ill-posedness of the angular spectral inverse scattering problems.

  • PDF

System of Efficient Trademark Image Retrieval (효율적인 상표 영상 검색 시스템)

  • Shin, Seong-Yoon;Baek, Jeong-Uk;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.160-161
    • /
    • 2010
  • In this paper, trademark image retrieval system is proposed by using color information and shape information. We use the image for a color information by dividing into the area and extracting the area color distribution histogram. We use for the shape information by preprocessing of the boundary extraction, the centroid extraction, angular sampling etc. and calculating of the sum of the distance from the centroid to the boundary, the standard deviation, and the rate of long axis to short axis. In particular, centroid by using the angular sampling can extract feature and reduce the processing time. Users can perform searchs using the color and shape information, and also the two methods by mixing can be used by weighting.

  • PDF

Estimation of Angular Location and Directivity Compensation of Split-beam Acoustic Transducer for a 50 kHz Fish Sizing Echo Sounder (50 kHz 체장어군탐지기용 분할 빔 음향 변환기의 지향성 보정 및 위치각 추정)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.423-430
    • /
    • 2011
  • The most satisfactory split-beam transducer for fish sizing maintains a wide bearing angle region for correct fish tracking without interference from side lobes and lower sensitivity to fish echoes outside of the main lobe region to correctly measure the angular location of free-swimming fishes in the sound beam. To evaluate the performance of an experimentally developed 50 kHz split-beam transducer, the angular location of a target was derived from the electrical phase difference between the resultant signals for the pair of transducer quadrants in the horizontal and vertical planes consisting of 32 transducer elements. The electrical phase difference was calculated by cross-spectral density analysis for the signals from the pair of receiving transducer quadrants, and the directivity correction factor for a developed split-beam transducer was estimated as the fourth-order polynomial of the off-axis beam angle for the angular location of the target. The experimental results demonstrate that the distance between the acoustic centers for the pair of receiving transducer quadrants can be controlled to less than one wavelength by optimization with amplitude-weighting transformers, and a smaller center spacing provides a range of greater angular location for tracking of a fish target. In particular, a side lobe level of -25.2 dB and an intercenter spacing of $0.96\lambda$($\lambda$= wavelength) obtained in this study suggest that the angular location of fish targets distributing within a range of approximately ${\pm}28^{\circ}$ without interference from side lobes can be measured.

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.

Inverse Optimal Problem for Homing Guidance with Angular Constraint (충돌각 제어 호밍유도법칙의 역최적 문제)

  • Lee, Jin-Ik;Lee, Yong-In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.412-418
    • /
    • 2007
  • An inverse optimal problem for homing guidance with angular constraint is addressed. The gains of BPN(Biased PN) are investigated by duality analysis related to the weighting matrices of the performance index in the LQ control problem. Moreover, the criteria for the existence of optimal gains are derived from the generalized Riccati equation. Based on the conditions we achieve the gain set of BPN to be optimal solution to the LQ problem with terminal constraints. To validate and demonstrate the proposed approach 3-DOF simulations are carried out.

Direction-Based Modified Particle Filter for Vehicle Tracking

  • Yildirim, Mustafa Eren;Ince, Ibrahim Furkan;Salman, Yucel Batu;Song, Jong Kwan;Park, Jang Sik;Yoon, Byung Woo
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.356-365
    • /
    • 2016
  • This research proposes a modified particle filter to increase the accuracy of vehicle tracking in a noisy and occluded medium. In our proposed method for vehicle tracking, the direction angle of a target vehicle is calculated. The angular difference between the motion direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted depending on their angular distance to the motion direction. Those particles moving in a direction similar to that of the target vehicle are assigned larger weights; this, in turn, increases their probability in a given likelihood function (part of the process of estimation of a target's state parameters). The proposed method is compared against a condensation algorithm. Our results show that the proposed method improves the stability of a particle filter tracker and decreases the particle consumption.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

Inverse Scattering Technique with Series Expanded Field of Dielectric Cylinders in Angular Spectral Domain (각스펙트럼 영역에서 전개함수 전계를 이용한 유전체 실린더에서의 역산란)

  • Kim, Ha-Chul;Choi, Hyun-Chul;Son, Hyon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.698-707
    • /
    • 1998
  • For inverse scattering problems reconstructing cross-sectional permittivity distributions of dielectric cylinders, the angular spectral inverse technique using the moment method with pulse basis function suffers from large reconstruction error even if very small noise due to requiring the higher spectral informations on the larger cross-section of the cylinder. To reduce the number of higher-order spectra, this paper presents an improved inverse technique in angular spectral domain applying the moment procedure with a series-expansion basis function for the induced field in each enlarged cross-sectional cell. By choosing adequate spectra and averaging over the enlarged cells with a suitable weighting function, the reconstruction profiles reveal fine enough to suppress the noise effect significantly.

  • PDF