• Title/Summary/Keyword: angle-binder

Search Result 34, Processing Time 0.016 seconds

Comparison and Evaluation of Dynamic Modulus of Hot Mix Asphalt with Different Shift Factors (전이함수 결정법에 따른 아스팔트 혼합물의 동탄성계수 비교평가)

  • Kim, Hyun-Oh;Lee, Kwan-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.49-61
    • /
    • 2005
  • The dynamic modulus of hot mix asphalt can be determined according to the different combinations of testing temperature and loading frequency. The superposition rule is adapted to get the master curve of dynamic modulus for each hot mix asphalt. There are couple of different methods to get the shift factor which is a key for making the master curve. In this paper, Arrehnius, 2002 AASHTO, and experimental method was employed to get the master curve. Evaluation of dynamic modulus for 25mm base course of hot mix asphalt with granite aggregate and two asphalt binders(AP-3 and AP-5) was carried out. Superpave Level 1 Mix Design with gyratory compactor was adopted to determine the optimum asphalt binder content(OAC) and the measured ranges of OAC were between 4.1% and 4.4%. UTM was used for laboratory test. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature(-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies(0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The shift factor and activation energy for determination of master curve were calculated.

  • PDF

PHOTOCATALYTIC ANTIEUNGAL ACTIVITY AGAINST CANDIDA ALBICANS BY $TiO_2$ COATED ACRYLIC RESIN DENTURE BASE

  • Yang Ji-Yeon;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.284-294
    • /
    • 2006
  • Statement of problem. Proliferation of Candida albicans is primarily within the plaque on the fitting surface of the denture rather than on the inflamed mucosa. Consequently, the treatment of the denture is equally important as treatment of the tissue. Cleansing and disinfection should be efficiently carried-out as the organisms can penetrate into the voids of the acrylic resin and grow in them, from which they can continue to infect and reinfect bearing tissues. Purpose. The purpose of this study was to evaluate the applicability of photocatalytic reaction to eliminate Candida albicans from acrylic resin denture base, and to investigate the anti-fungal effect with various UVA illumination time. Materials and Methods. The specimens were cured by the conventional method following the manufacturer's instruction using thermal polymerized denture base resin (Vertex RS: Dentimex, Netherlands). $TiO_2$ photocatalyst sol(LT), which is able to be coated at normal temperature, was made from the Ti-alkoxide progenitor. The XRD patterns, TEM images and nitrogen absorption ability of the $TiO_2$ photocatalyst sol(LT) were compared with the commercial $TiO_2$ photocatalyst P-25. The experimental specimens were coated with the mixture of the $TiO_2$ photocatalyst sol(LT) and binder material (silane) using dip-coater, and uncoated resin plates were used as the control group. Crystallinity of $TiO_2$ of the specimen was tested by the XRD. Size, shape and chemical compositions were also analyzed using the FE-SEM/ EDS. The angle and methylene blue degradation efsciency were measured for evaluating the photocatalytic activity of the $TiO_2$ film. Finally, the antifungal activity of the specimen was tested. Candida albicans KCTC 7629(1 ml, initial concentration $10^5$ cells/ ml) were applied to the experiment and control group specimens and subsequently two UVA light source with 10W, 353 nm peak emission were illuminated to the specimens from 15cm above. The extracted $2{\mu}l$ of sample was plated on nutrient agar plate ($Bacto^{TM}$ Brain Heart Infusion; BD, USA) with 10 minute intervals for 120 minute, respectively. It was incubated for 24 hours at $37^{\circ}C$ and the colony forming units (CFUs) were then counted. Results. Compared the characteristics of LT photocatalyst with commercial P-25 photocatalyst, LT were shown higher activity than P-25. The LT coated experimental specimen surface had anatase crystal form, less than 20 nm of particle size and wide specific surface area. To evaluate the photocatalytic activity of specimens, methylene blue degradation reaction were used and about 5% of degradation rate were measured after 2 hours. The average contact angle was less than $20^{\circ}$ indicating that the LT photocatalyst had hydrophilicity. In the antifungal activity test for Candida albicans, 0% survival rate were measured within 30 minute after irradiation of UVA light. Conclusion. From the results reported above, it is concluded that the UVA-LT photocatalytic reaction have an antifungal effect on the denture surface Candida albicans, and so that could be applicable to the clinical use as a cleaning method.

Predictive Equation of Dynamic Modulus for Hot Mix Asphalt with Granite Aggregates (화강암 골재를 이용한 아스팔트 혼합물의 동탄성 계수 예측방정식)

  • Lee, Kwan-Ho;Kim, Hyun-O;Jang, Min-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.425-433
    • /
    • 2006
  • The presented work provided a predictive equation for dynamic modulus of hot mix asphalt, which showed higher reliability and more simplicity. Lots of test result by UTM at laboratory has been used to develop the precise predictive equation. Evaluation of dynamic modulus for 13mm and 19mm surface course and 25mm of base course of hot mix asphalt with granite aggregate and two asphalt binders (AP-3 and AP-5) were carried out. Superpave Level 1 Mix Design with gyrator compactor was adopted to determine the optimum asphalt binder content (OAC) and the measured ranges of OAC were between 5.1% and 5.4% for surface HMA, and around 4.2% for base HMA. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature (-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies (0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The effect of each parameter for equation has been compared. Due to the limitation of laboratory tests, the reliability of predictive equation for dynamic modulus is around 80%.

A Study on the Optimization of α-Al2O3 Powder Manufacturing for the Application of Separators for Lithium-Ion Secondary Batteries (리튬이차전지용 분리막 적용을 위한 α-알루미나 분말 제조 최적화 연구)

  • Dong-Myeong Moon;Da-Eun Hyun;Ji-Hui Oh;Jwa-Bin Jeon;Yong-Nam Kim;Kyoung-Hoon Jeong;Jong-Kun Lee;Sang-Mo Koo;Dong-Won Lee;Jong-Min Oh
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.6
    • /
    • pp.638-646
    • /
    • 2023
  • Recently, active research has been conducted to enhance the power characteristics and thermal stability of lithium-ion batteries (LiBs) by modifying separators using a ceramic coating method. However, since the thermal properties and surface features of the separator vary depending on the characteristics of the ceramic powders applied to the separator, it is crucial to manufacture ceramic powders optimized for the separator's performance. In this study, we evaluated the characteristics of three types of α-alumina (A-1, A-2, and A-3) produced with varying dispersant contents and milling times, in addition to commercial α-alumina (AES-11). Subsequently, the optimized powders (A-3) were coated onto the separator using an aqueous binder for comparison with the characteristics of an AES-11 coated separator and an uncoated PE separator. The A-3 coated separator improved electrolyte wettability with a low contact angle (44.69°) and increased puncture strength (538 gf). Furthermore, it exhibited excellent thermal stability, with a shrinkage value of 5.64% when exposed to 140℃ for 1 hour, compared to the AES11 coated separator (6.09%) and the bare PE separator (69.64%).