• Title/Summary/Keyword: angle of shoulder

Search Result 449, Processing Time 0.03 seconds

Analysis of Technical Error of Manual Measurements (직접 측정한 인체치수의 기술적 오차 분석)

  • Park, Jinhee;Nam, Yun Ja
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.4
    • /
    • pp.641-649
    • /
    • 2016
  • Highly precision body measurements represent basic data required by industry and researches who wish to utilize information about the human body. The proficiency and expertise of the measurers have a significant influence on the error and accuracy of data when various parts from multiple subjects' bodies are measured. Therefore, in order to measure accurate body measurements (when measuring bodies directly), it is necessary to conduct objective analyses on errors. This study calculated the Relative Technical Error of Measurement (%TEM) using data that measured each of 24 subjects and discussed errors and methods to reduce errors by conducting comparison analysis based on measured items and objects. The result of analysis indicated that the errors based on age and gender of the objects of measurement were minor; however, there were comparatively distinct differences in measured errors based on measured items. 'Right and left Shoulder Angle' for all measured subjects displayed the greatest errors and standard deviations. 'Height' dimension, Lateral Malleolus Height and Head Height had big errors; in addition, 'Circumference', Neck Base Circumference and Armscye Circumference also had big errors. More careful measurements of such items with big errors require additional educational plan such as a proposal for more objective and detailed measurement methods. Items with small errors but big standard deviations such as Waist Circumference, Calf Circumference, Minimum Leg Circumference, Chest Circumference, Hip Circumference and Waist Circumference confirmed that errors for them greatly decreased with repeated experiments and resultant measurers increased proficiency; consequently, repeated measuring experiments for these items greatly enhance accuracy.

Effects of Thoracic Mobility Exercise on Cervicothoracic Function, Posture and Pain in Individuals With Mechanical Neck Pain (등뼈 가동성 운동이 기계적 목통증 환자의 목등뼈부 기능 수준과 자세, 통증 수준에 미치는 영향)

  • Lee, Hwa-jeong;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.26 no.3
    • /
    • pp.42-56
    • /
    • 2019
  • Background: Individuals with mechanical neck pain show biomechanical and neurophysiological changes, including cervical spine muscle weakness. As a result of deep muscle weakness, it causes stability disability and reduced upper thoracic spine mobility, which finally leads to functional movement restriction such as limited range of motion and dysfunction. Recent studies have shown that thoracic spine manipulation and mobilization could reduce symptoms of mechanical neck pain in patients. Objects: The purpose of this study was to investigate the effects of thoracic mobility exercise on cervicothoracic function, posture feature, and pain intensity in individuals with mechanical neck pain. Methods: The study subjects were 26 persons who were randomly assigned to the experimental (with thoracic mobility exercise) and control groups (without thoracic mobility exercise), with 13 subjects in each group. The cervicothoracic function (neck functional disability level and cervicothoracic range of motion), posture feature, and pain rating (using a quadrupled visual analogue scale [QVAS]) were measured before, after 3 weeks, and after 6 weeks. Results: Statistically significant group-by-time interactions were found with repeated analyses of variance for the Korean neck disability index (KNDI), all cervical range of motion (CROM), all thoracic range of motion (TROM), cranial rotation angle, sagittal shoulder posture (SSP), and QVAS (p<.05). All groups showed significant improvements from all times in all the evaluated methods. The KNDI, CROM, TROM of left rotation, and SSP in the experimental group showed significant improvements after 3 weeks, and the TROM of the right rotation and QVAS in the experimental group showed significant improvements after 6 weeks when compared with the control group. Conclusion: Thoracic mobility exercise during 6 weeks might be effective intervention to improve the functional level, posture feature, and QVAS pain rating for managing individuals with mechanical neck pain.

Mechanical Properties and Microstructure on Dissimilar Friction-Stir-Weld of Aluminium Alloys (FSW된 이종알루미늄합금의 접합 특성 및 미세 조직)

  • Han, Min-Su;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.75-81
    • /
    • 2011
  • Dissimilar joining of aluminum 6061-T6 alloy to aluminum 5083-O alloy was performed using friction-stir welding technique. The mechanical properties, hardness, macro- and micro-structure on dissimilar friction-stir-weld aluminium alloy were investigated. Mechanical properties of the weld mainly depend on which Al alloy is placed at the retreating sides of the rotating tool respectively during dissimilar friction-stir weld because the microstructure of stir zone was mainly composed of welded Al alloys of the retreating side. Onion ring pattern was observed like lamella structure stacked by each Al alloy in turn. It apparently results in defect-free weld zone that traverse speed was changed to 124 mm/min under conditions of tool rotation speed like 1250 rpm with 5 mm of tool's prove diameter, 4.5 mm of prove length, 20 mm of shoulder diameter, and $2^{\circ}$ of tilting angle. The 231 MPa of ultimate stress and the 121 MPa of yield point are obtained about the friction-stir-welded Al 6061-T6(AS) to Al 5083-O(RS).

A Study on the Development of Low Speed Twin-Hull Form for Seabed Organic Sediment Collection (해저 유기퇴적물 수거를 위한 저속 쌍동형 선형개발 연구)

  • Park, Je-woong;Kim, Do-jung;Oh, Woo-jun;Jeong, Uh-cheul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.246-252
    • /
    • 2016
  • In this study, conceptual design of the fore-body hull form of catamaran type dredging vessel was performed that can effectively remove the contaminated sediments in coastal seabed. The hull form was simpled for the easy hull construction and the resistance performance was investigated to find out the effect of hull form parameters between variation of waterline and angle of entrance, etc. The relation between resistance performance and characteristics of free surface flows according to variation of bow forms was investigated by model testing in the circulating water channel and using Ansys CFX. The improvement of ship resistance performance to the wave resistance decrease due to improved wave pattern has been verified according to move the stem and the volume of the shoulder to the fore part of the vessel.

A Study on Body Type Characteristics of Chinese-Korean Women between 15 and 17 Years Old Living in China (중국 거주 조선족 15-17세 여성의 체형특성 연구)

  • Im, Soon;Kim, Sang-Hee
    • Journal of the Korean Society of Costume
    • /
    • v.61 no.3
    • /
    • pp.97-110
    • /
    • 2011
  • In this study, the characteristics of body type of Chinese-korean Women between 15 and 17 Years Old Living in China were reviewed by analysing factors and groups in order to provide basic data required to research body types. The following are study results. 1. The study examined average, standard deviation, the minimum value and the maximum value of the 72 items gained from measuring Chinese-korean women between 15~17 years old living in China, and found that 21 items showed more than 4.0 standard deviation among the entire measurements. 2. The current study conducted a factor analysis for the 72 items in order to extract and compare components of body types among Chinese-korean women between 15~17 years old living in China. As a result, 9 factors were extracted, and characteristic values were ranged from 1.15 to 24.71 while the accumulated contributory rate was 75.98%. 3. Chinese-korean women between 15 and 17 years old living in China were classified into three types. Among the 72 items, it was observed that there were differences among groups in 64 items including 15 height items, 10 width items, 16 circumference items, 5 thickness items, 17 length items and weight, excluding neck width, head thickness, shoulder angle, head height, face length, waist back length, scye depth and waist to kip length. 4. As a result of proportion comparison using body indexes of Korean women between 15 and 17 years old living in China and Korea, it was found that, in height item, when regarding the height as 100, Korean women between 15 and 17 years old living in China tended to have longer lower half of the body in relation to the height compared to the Korean.

Upper Extremity Biomechanics of Manual Wheelchair Propulsion at Different Speeds (수동 휠체어 추진 속도에 따른 상지 관절 생체역학적 영향 분석)

  • Hwang, Seonhong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.241-250
    • /
    • 2022
  • It is known that chronic pain and injury of upper limb joint tissue in manual wheelchair users is usually caused by muscle imbalance, and the propulsion speed is reported to increase this muscle imbalance. In this study, kinematic variables, electromyography, and ultrasonographic images of the upper limb were measured and analyzed at two different propulsion speeds to provide a quantitative basis for the risk of upper extremity joint injury. Eleven patients with spinal cord injury for the experimental group (GE) and 27 healthy adults for the control group (GC) participated in this study. Joint angles and electromyography were measured while subjects performed self-selected comfortable and fast-speed wheelchair propulsion. Ultrasound images were recorded before and after each propulsion task to measure the acromiohumeral distance (AHD). The range of motion of the shoulder (14.35 deg in GE; 20.24 deg in GC) and elbow (5.25 deg in GE; 2.57 deg in GC) joints were significantly decreased (p<0.001). Muscle activation levels of the anterior deltoid, posterior deltoid, biceps brachii, and triceps brachii increased at fast propulsion. Specifically, triceps brachii showed a significant increase in muscle activation at fast propulsion. AHD decreased at fast propulsion. Moreover, the AHD of GE was already narrowed by about 60% compared to the GC from the pre-tests. Increased load on wheelchair propulsion, such as fast propulsion, is considered to cause upper limb joint impingement and soft tissue injury due to overuse of the extensor muscles in a narrow joint space. It is expected that the results of this study can be a quantitative and objective basis for training and rehabilitation for manual wheelchair users to prevent joint pain and damage.

Real-Time Algorithm for Relative Position Estimation Between Person and Robot Using a Monocular Camera (영상정보만을 이용한 사람과 로봇간 실시간 상대위치 추정 알고리즘)

  • Lee, Jung Uk;Sun, Ju Young;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1445-1452
    • /
    • 2013
  • In this paper, we propose a real-time algorithm for estimating the relative position of a person with respect to a robot (camera) using a monocular camera. The algorithm detects the head and shoulder regions of a person using HOG (Histogram of Oriented Gradient) feature vectors and an SVM (Support Vector Machine) classifier. The size and location of the detected area are used for calculating the relative distance and angle between the person and the camera on a robot. To increase the speed of the algorithm, we use a GPU and NVIDIA's CUDA library; the resulting algorithm speed is ~ 15 Hz. The accuracy of the algorithm is compared with the output of a SICK laser scanner.

A Kinematical Characteristic Analysis of a Iron fade-shot with a Golf Swills (아이언 페이드샷의 운동학적 특성 분석)

  • Lee, Kyung-Il;Oh, Jong-Sun;Chung, Jin-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.311-322
    • /
    • 2009
  • Using the 3-D analysis, this study winpared and analyzed the 'fade-shot swing' which is one of the golf technique. The subjects of this study were 3 male pro golfers they experimented with only a 7 iron. The purpose was to enhance their performance by producing the important kinematical parameters, finding out the features in them and providing the data to a coach and players. As a result, the position of the club head showed from the outside orbit to the inside orbit. When position of the center of mass moved backwards, the probability of the failure of the fade-shot increased. Cocking angle had an effect on easing the wrist for a smooth follow-through after the impact. It showed that the changes in the shoulder movement was made first and followed by the waist. The hip joint angular velocity achieved a smooth fade-shot motion due to the hitting delay also the velocity of the club-head was faster when uncocking was released at the time of impact.

Development of Squat Posture Guidance System Using Kinect and Wii Balance Board

  • Oh, SeungJun;Kim, Dong Keun
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.1
    • /
    • pp.74-83
    • /
    • 2019
  • This study designs a squat posture recognition system that can provide correct squat posture guidelines. This system comprises two modules: a Kinect camera for monitoring users' body movements and a Wii Balance Board(WBB) for measuring balanced postures with legs. Squat posture recognition involves two states: "Stand" and "Squat." Further, each state is divided into two postures: correct and incorrect. The incorrect postures of the Stand and Squat states were classified into three and two different types of postures, respectively. The factors that determine whether a posture is incorrect or correct include the difference between shoulder width and ankle width, knee angle, and coordinate of center of pressure(CoP). An expert and 10 participants participated in experiments, and the three factors used to determine the posture were measured using both Kinect and WBB. The acquired data from each device show that the expert's posture is more stable than that of the subjects. This data was classified using a support vector machine (SVM) and $na{\ddot{i}}ve$ Bayes classifier. The classification results showed that the accuracy achieved using the SVM and $na{\ddot{i}}ve$ Bayes classifier was 95.61% and 81.82%, respectively. Therefore, the developed system that used Kinect and WBB could classify correct and incorrect postures with high accuracy. Unlike in other studies, we obtained the spatial coordinates using Kinect and measured the length of the body. The balance of the body was measured using CoP coordinates obtained from the WBB, and meaningful results were obtained from the measured values. Finally, the developed system can help people analyze the squat posture easily and conveniently anywhere and can help present correct squat posture guidelines. By using this system, users can easily analyze the squat posture in daily life and suggest safe and accurate postures.

Comparison of EMG Activity of the Posterior Oblique Sling Muscles and Pelvic Rotation During Prone Hip Extension With and Without Lower Trapezius Pre-Activation

  • Jeon, In-cheol;Ha, Sung-min;Hwang, Ui-jae;Jung, Sung-hoon;Kim, Hyun-sook;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.80-86
    • /
    • 2016
  • Background: Prone hip extension (PHE) can be performed to measure the lumbopelvic motor patterns and motions. Imbalances in lumbopelvic muscle activity and muscle weakness can result in instability including pain in lumbopelvic region. The posterior oblique sling (POS) muscles contribute to dynamic lumbopelvic stability. In addition, POS are anatomically aligned with the trapezius muscle group according to shoulder positions. Objects: This study compared the electromyography (EMG) activity of POS and pelvic compensations during PHE with and without pre-activation of lower trapezius muscle (lowT). Methods: Sixteen healthy males were recruited. PHE was performed in randomized order: PHE with and without lowT pre-activation. Surface EMG signals were recorded for biceps femoris (BF), gluteus maximus (GM) (ipsilateral), lumbar multifidus (MF) (bilateral), and the lowT (contralateral). An electromagnetic tracking motion analysis was used to measure the angle of pelvic rotation and anterior tilting. Results: The ipsilateral GM and bilateral MF EMG amplitudes were greater during PHE with lowT pre-activation compared to PHE without lowT pre-activation (p<.05). The BF amplitude during PHE without lowT pre-activation was significantly greater than that during PHE with lowT pre-activation (p<.05). The angles of pelvic rotation and anterior tilting during PHE with lowT pre-activation were significantly smaller compared to PHE without lowT pre-activation (p<.05). Conclusion: PHE with lowT pre-activation, which is aligned with the POS, showed more increased MF and GM muscular activity with smaller lumbopelvic compensations in rotation and anterior tilting compared to PHE without lowT pre-activation.