• Title/Summary/Keyword: angle dependence

Search Result 273, Processing Time 0.024 seconds

Effect of Out-of-plane Retardation of Substrate Film on the Viewing-angle Dependence of Transmittance in a Display Device

  • Ahn, Sumin;Lee, Ji-Hoon
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.45-51
    • /
    • 2021
  • The effect of the out-of-plane retardation (Rth) of a substrate film on the viewing-angle dependence of transmittance (TR) in a display device was investigated. When the polarization state of input light deviates from the transmission axis of the polarizer, Rth of the substrate film induces inhomogeneous viewing-angle dependence of TR. The inhomogeneity of TR gets worse for greater values of of Rth. The inhomogeneous TR profile can be eliminated by inserting compensation films, which convert the input polarization state to the linear polarization state parallel to the transmission axis of the polarizer.

Angular Spectrum of the Spontaneous Emission from Dye Molecules Near a Boundary

  • Choi, Hyun-Ho;Kim, Hyoung-Joo;Noh, Jae-Woo;Park, Dae-Yoon;Jhe, Won-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-4
    • /
    • 2002
  • We studied experimentally the angular spectrum of the light emitted from dye Molecules near a plane boundary. It is confirmed that the molecules near the boundary can emit light into the evanescent wave mode, and the light emission with the angle greater than the critical angle is detected with good accuracy. The angular spectrum of the spontaneous radiation is measured, and the spectrum shows contributions from the molecules both near and far away from the boundary. The polarization dependence and the pumping angle dependence are also measured. The experimental results are in good agreement with quantum theory.

No Tilt Angle Dependence of Grain Boundary on Mechanical Strength of Chemically Deposited Graphene Film

  • Kim, Jong Hun;An, Sung Joo;Lee, Jong-Young;Ji, Eunji;Hone, James;Lee, Gwan-Hyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.506-512
    • /
    • 2019
  • Although graphene has been successfully grown in large scale via chemical vapor deposition (CVD), it is still questionable whether the mechanical properties of CVD graphene are equivalent to those of exfoliated graphene. In addition, there has been an issue regarding how the tilt angle of the grain boundary (GB) affects the strength of graphene. We investigate the mechanical properties of CVD graphene with nanoindentation from atomic force microscopy and transmission electron microscopy. Surprisingly, the samples with GB angles of 10° and 26° yielded similar fracture stresses of ~ 80 and ~ 79 GPa, respectively. Even for samples with GB exhibiting a wider range, from 0° to 30°, only a slightly wider fracture stress range (~ 50 to ~ 90 GPa) was measured, regardless of tilt angle. The results are contrary to previous studies that have reported that GBs with a larger tilt angle yield stronger graphene film. Such a lack of angle dependence of GB can be attributed to irregular and well-stitched GB structures.

Incident Angle Dependence of Quantum Efficiency in c-Si Solar Cell or a-Si Thin Film Solar Cell in BIPV System (광 입사각이 BIPV에 적용되는 단결정 또는 비정질 실리콘 태양전지의 양자효율에 미치는 영향)

  • Kang, Jeong-Wook;Son, Chan-Hee;Cho, Guang-Sup;Yoo, Jin-Hyuk;Kim, Joung-Sik;Park, Chang-Kyun;Cha, Sung-Duk;Kwon, Gi-Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • The conversion efficiency of solar cells depending on incident angle of light is important for building-integrated photovoltaics (BIPV) applications. The quantum efficiency is the ratio of the number of charge carriers collected by the solar cell to the number of photons of a given energy shining on the solar cell. The analysis of angle dependence of quantum efficiencies give more information upon the variation of power output of a solar cell by the incident angle of light. The variations in power output of solar cells with increasing angle of incidence is different for the type of cell structures. In this study we present the results of the quantum efficiency measurement of single-crystalline silicon solar cells and a-Si:H thin-film solar cells with the angle of incidence of light. As a result, as the angle of incidence increases in single-crystalline silicon solar cells, quantum efficiency at all wavelength (300~1,100 nm) of light were reduced. But in case of a-Si:H thin-film solar cells, quantum efficiency was increased or maintained at the angle of incidence from 0 degree to about 40 degrees and dramatically decrease at more than 40 degrees in the range of visible light. This results of quantum efficiency with increasing incident angle were caused by haze and interference effects in thin-film structure. Thus, the structural optimization considering incident angle dependence of solar cells is expected to benefit BIPV.

Angular dependence of critical current of SmBCO coated conductor fabricated by co-evaporation method

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Song, Kyu-Jeong;Ko, Rock-Kil;Ha, Dong-Woo;Kim, Tae-Hyung;Youm, Do-Jun;Lee, Nam-Jin;Moon, Seung-Hyun;Yoo, Sang-Im;Park, Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.16-19
    • /
    • 2008
  • Angular dependence of critical current density of SmBCO coated conductor fabricated by co-evaporation method was investigated. For comparison, three samples were fabricated by a co-evaporation method and one sample was fabricated by a pulsed laser deposition process. The deposition system, named EDDC (Evaporation using Drum in Dual Chambers), is a batch type co-evaporation system, which is composed of reaction chamber and evaporation chamber. The normalized critical current density ratio ($I_c/I_c$(H//ab-plane)) of EDDC-SmBCO samples was found to be higher than that of PLD-YBCO sample in the whole range of angle. While the EDDC-SmBCO samples evidently had a peak at the angle of H//c-axis in the plot of the angular dependence of critical current, the normalized critical current of PLD-YBCO sample decreased monotonically without any peak as angle increased. The field dependence of critical current under the magnetic field parallel to the normal direction of those samples showed similar aspect in the range of $0\;G{\sim}5000\;G$.

Dependence of the peak fluxes of solar energetic particles on CME parameters and magnetic connectivity

  • Park, Jinhye;Moon, Yong-Jae;Lee, Harim;Kahler, S.W.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.82.3-83
    • /
    • 2017
  • We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO, STEREO-A and/or B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angle between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of Parker spiral field. The main results are as follows. 1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multi-spacecraft is similar to that on 2D CME speed. 2) There is a positive correlation between SEP peak flux and 3D angular width from multi-spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. 3) There is a noticeable anti-correlation (r=-0.62) between SEP peak flux and separation angle. 4) The multiple regression method between SEP peak fluxes and CME parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.

  • PDF

Target strength estimation by tilt angle and size dependence of rockfish (Sebastes schlegeli) using ex-situ and acoustic scattering model (현수법과 모델을 이용한 조피볼락의 유영자세각과 체장에 따른 음향 후방산란강도)

  • YOON, Euna;KIM, Kiseon;LEE, Intae;JO, Hyeon-Jeong;LEE, Kyounghoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.2
    • /
    • pp.152-159
    • /
    • 2017
  • Rockfish was a commercially important fish specie in marine ranching areas in Korea. To estimate density and biomass of rockfish using acoustic method, target strength (TS) information is required on the species. This study measured TS dependence on tilt angle and size on 14 live rockfish individuals at 38, 70, and, 120 kHz by ex-situ measurement (tethered method) and acoustic scattering model (Krichhoff ray mode, KRM). The swimbladdered angle ranged from 18 to $30^{\circ}$ ($mean{\pm}s.d.=26{\pm}4^{\circ}$). The mean TS for all individuals was highest -35.9 dB of tilt angle $-17^{\circ}$ at 38 kHz, -35.4 dB of tilt angle $-25^{\circ}$ at 70 kHz, and -34.9 dB of tilt angle $-22^{\circ}$ at 120 kHz. The ex-situ TS-total length (TL, cm) relationships were $TS_{38kHz}=20log_{10}(TL)-67.1$, $TS_{70kHz}=20log_{10}(TL)-68.6$, and $TS_{120kHz}=20log_{10}(TL)-69.9$, respectively. The model TS-total length (TL, cm) relationships were $TS_{38kHz}=20log_{10}(TL)-66.4$, $TS_{70kHz}=20log_{10}(TL)-67.0$, $TS_{120kHz}=20log_{10}(TL)-67.0$. The two measurements between the ex-situ TS and KRM model for TS-tilt angle and fish size were found to be significantly correlated.

Analysis of Maximum Power Generation of Photovoltaic Module Depending on Constituent Materials and Incident Light Characteristics (구성 재료와 방사조도 특성에 따른 태양전지모듈의 최대출력 분석)

  • Kang, Gi-Hwan;Kim, Kyung-Soo;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • In this study, we analyze the maximum power generation of photovoltaic(PV) module depending on constituent materials and incidence angle dependence of light. To verify characteristics of constituent materials, we made photovoltaic modules with 4 kinds of solar cells and textured glass according to fabrication method. To find the degree of the maximum power generation dependence on intensity of light, Solar Simulator is applied by changing angle of module and light intensity. Through this experiment, to obtain maximum power generation from limited PV modules, it is needed to fully understand constituent materials, fabrication method and dependence of incident light characteristics.

Holographic Demultiplexer with Low Polarization Dependence Loss using Photopolymer Diffraction Gratings

  • Lee, Kwon-Yeon;Jeung, Sang-Huek;Do, Due-Dung;Kim, Nam;An, Jun-Won
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.51-54
    • /
    • 2007
  • A holographic demultiplexer aimed at producing low polarization dependence loss using a long period volumetric diffraction grating inside photopolymer has been reported and experimentally demonstrated. To obtain the long period gratings, two kinds of gratings are recorded by angle of $4^{\circ}\;and\;6^{\circ}$ corresponding to the polarization dependence property of below 0.5 dB. From the experimental results, we demonstrate the 0.8 nm-spaced 21 channel holographic demultiplexer with the polarization dependence loss of less than -0.38 dB, the channel uniformity of 0.495 dB, and the channel crosstalk of -13 dB.

Optimal response of conical tool semi angle in ductile metal sheets indentation and its governing mechanics

  • Nazeer, Malik M.;Khan, M. Afzal;Haq, A-Ul
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.47-62
    • /
    • 2003
  • The nonlinear dependence aspect of various conical tool indentation parameters leading to an optimum tool semi angle value for easiest perforation is plotted and discussed explicitly in this work with the conclusion that tool angle has an optimum response towards most of the indentation parameters. Around this optimum angle, the aluminium sheets showed minimum fracture toughness as well as minimum work input to overcome the offered resistance. At the end, the mechanism leading to this phenomenon is presented with the conclusion that plastic flow dominates as the dimple semi cone angle reaches 35 and both pre and post plastic flow perforations lead the tool semi cone angle value towards this dimple cone semi angle of plastic flow initiation for its optimum performance. It is also concluded that specimen material failure is solely under tensile hoop stress and hence results into radial cracks initiation and propagation.