DOI QR코드

DOI QR Code

Effect of Out-of-plane Retardation of Substrate Film on the Viewing-angle Dependence of Transmittance in a Display Device

  • Ahn, Sumin (Future Semiconductor Convergence Technology Research Center, Division of Electronics Engineering, Jeonbuk National University) ;
  • Lee, Ji-Hoon (Future Semiconductor Convergence Technology Research Center, Division of Electronics Engineering, Jeonbuk National University)
  • Received : 2020.11.12
  • Accepted : 2020.12.31
  • Published : 2021.02.25

Abstract

The effect of the out-of-plane retardation (Rth) of a substrate film on the viewing-angle dependence of transmittance (TR) in a display device was investigated. When the polarization state of input light deviates from the transmission axis of the polarizer, Rth of the substrate film induces inhomogeneous viewing-angle dependence of TR. The inhomogeneity of TR gets worse for greater values of of Rth. The inhomogeneous TR profile can be eliminated by inserting compensation films, which convert the input polarization state to the linear polarization state parallel to the transmission axis of the polarizer.

Keywords

References

  1. J. Chen and P.-J. Bos, "Simple four-domain twisted nematic liquid crystal display," Appl. Phys. Lett. 67, 1990-1992 (1995). https://doi.org/10.1063/1.114763
  2. M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multidomain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996). https://doi.org/10.1038/381212a0
  3. H. Vithana, D. Johnson, P. Bos, R. Herke, Y. K. Fung and S. Jamal, "Nearly homeotropically aligned four-domain liquid crystal display with wide viewing angle," Jpn. J. Appl. Phys. 35, 2222-2227 (1996). https://doi.org/10.1143/JJAP.35.2222
  4. S.-C. A. Lien, C. Cai, R. W. Nunes, R. A. John, E. A. Galligan, E. Colgan, and J. S. Wilson, "Multi-domain homeotropic liquid crystal display based on ridge and fringe field structure," Jpn. J. Appl. Phys. 37, L597-L599 (1998). https://doi.org/10.1143/JJAP.37.597
  5. K.-H. Kim, K.-H. Lee, S.-B. Park, and J.-K. Song, "Liquid crystal display having a wide viewing angle," U.S. patent 6567144B1 (2003).
  6. H. Mori, Y. Itoh, Y. Nishiura, T. Nakamura, and Y. Shinagawa, "Performance of a novel optical compensation film based on negative birefringence of discotic compound for wide-viewing-angle twisted-nematic liquid-crystal displays," Jpn. J. Appl. Phys. 36, 143-147 (1997). https://doi.org/10.1143/JJAP.36.143
  7. H. Mori, "Novel optical compensators of negative birefringence for wide-viewing-angle twisted-nematic liquid-crystal displays," Jpn. J. Appl. Phys. 36, 1068-1072 (1997). https://doi.org/10.1143/JJAP.36.1068
  8. Y. Saitoh, S. Kimura, K. Kusafuka, and H. Shimizu, "Optimum film compensation of viewing angle of contrast in in-plane-switching-mode liquid crystal display," Jpn. J. Appl. Phys. 37, 4822-4828 (1998). https://doi.org/10.1143/JJAP.37.4822
  9. Y. Hisatake, Y. Kawata, and A. Murayama, "31.3: Viewing angle controllable LCD using variable optical compensator and variable diffuser," Soc. Inf. Disp. Symp. Dig. Tech. Pap. 36, 1218-1221 (2005). https://doi.org/10.1889/1.2036223
  10. X. Zhu, Z. Ge, and S.-T. Wu, "Analytical solutions for uniaxial-film-compensated wide-view liquid crystal displays," J. Disp. Technol. 2, 2-20 (2006). https://doi.org/10.1109/JDT.2005.863599
  11. J. Chen, K.-H. Kim, J.-J. Jyu, J. H. Souk, J. R. Kelly, and P. J. Bos, "31.2: Optimum film compensation modes for TN and VA LCDs," Soc. Inf. Disp. Symp. Dig. Tech. Pap. 29, 315-318 (1998). https://doi.org/10.1889/1.1833756
  12. Y.-C. Yang and D.-K. Yang, "P-199: Achromatic reduction of off-axis light leakage in LCDs by self-compensated phase retardation (SPR) film," Soc. Inf. Disp. Symp. Dig. Tech. Pap. 39, 1955-1958 (2008). https://doi.org/10.1889/1.3069577
  13. S.-W. Oh and T.-H Yoon, "Elimination of leakage over the entire viewing cone in a homogeneously-aligned liquid crystal cell," Opt. Express 22, 5808-5817 (2014). https://doi.org/10.1364/OE.22.005808
  14. H. Mori, "The wide view (WV) film for enhancing the field of view of LCDs," J. Disp. Technol. 1, 179 (2005). https://doi.org/10.1109/JDT.2005.858935
  15. H. Mori, M. Nagai, H. Nakayama, Y. Itoh, K. Kamada, K. Arakawa, and K. Kawata, "Novel optical compensation method based upon a discotic optical compensation film for wideviewing-angle LCDs," Soc. Inf. Disp. Symp. Dig. Tech. Pap. 34, 1058-1064 (2003). https://doi.org/10.1889/1.1832470
  16. Y.-C. Yang and D.-K. Yang, "Analytic expressions of optical retardation of biaxial compensation films for liquid crystal displays," J. Opt. A: Pure Appl. Opt. 11, 1055002 (2009).
  17. P. Yeh, "Extended Jones matrix method," J. Opt. Soc. Am. A 72, 507-513 (1982). https://doi.org/10.1364/JOSA.72.000507
  18. P. Yeh, and C. Gu, Optics of liquid crystal displays, 2nd ed., (John Wiley & Sons, NJ, USA. 1999), Chap. 9.
  19. J. Hwang, S. Yang, Y.-J. Choi, Y. Lee, K.-W. Jeong, and J.-H. Lee, "Single layer retarder with negative dispersion of birefringence and wide field-of-view," Opt. Express 24, 19934-19939 (2016). https://doi.org/10.1364/OE.24.019934
  20. H. J. Ryu, J. Hwang, J. Kim, and J.-H. Lee, "Dependence of the birefringence of polystyrene film on the stretching conditions," Appl. Opt. 57, 268-272 (2018). https://doi.org/10.1364/AO.57.000268
  21. J. Kim and J.-H. Lee, "Stokes polarimetry method for measuring in-plane retardation and out-of-plane retardation of optical wave," IEEE Trans. Instrum. Meas. 69, 9805-9812 (2020). https://doi.org/10.1109/tim.2020.3005275
  22. P. Yeh and C. Gu, "Birefringent optical compensators for TNLCDs," Proc. SPIE 3421, 224-235 (1998).
  23. P. Yeh, "Leakage of light in liquid crystal displays and birefringent thin film compensators," Opt. Rev. 16, 192-198 (2009). https://doi.org/10.1007/s10043-009-0035-2
  24. S. Yang, H. Lee, and J.-H. Lee, "Negative dispersion retarder with a wide viewing angle made by stacking reactive mesogen on a polymethylmethacrylate film," Opt. Eng. 55, 027106 (2016). https://doi.org/10.1117/1.OE.55.2.027106
  25. H.-J. Choi, K.-U. Jeong, and J.-H. Lee, "Optical anisotropy conversion of retarder film made of rodlike and crosslike reactive molecules, and its dependence on the relative ratio and the orientation of the constituent molecules," Opt. Mater. 99, 109531 (2020). https://doi.org/10.1016/j.optmat.2019.109531
  26. S. Yang and J.-H. Lee, "Optical simulation of viewing angle property of biaxial nematic bent-core liquid crystal," J. Opt. Soc. Korea 20, 510-514 (2016). https://doi.org/10.3807/JOSK.2016.20.4.510