• 제목/요약/키워드: angiotensin II receptor

검색결과 94건 처리시간 0.021초

한국인에서 Angiotensin II Type 2 Receptor 유전자에 존재하는 C3123A 다형선과 본태성 고혈압과의 관련성에 관한 연구 (Association Study Between the C3123A Polymorphism of the Angiotensin II Type 2 Receptor Gene in the Human X Chromosome and Essential Hypertension in Koreans)

  • 강병용;배준설;이강오
    • Environmental Analysis Health and Toxicology
    • /
    • 제20권1호
    • /
    • pp.39-45
    • /
    • 2005
  • Renin-angiotensin system (RAS)은 혈압 조절에 중요한 역할을 수행하는 생리적 조절계로써, 이 system 을 구성하는 유전자들의 이상은 본태성 고혈압의 발병과 유의하게 관련된 것으로 알려졌다. RAS의 주요한 구성 성분인 angiotensin II는 2종류의 수용체인 angiotensin II type I receptor(AT₁R)와 angiotensin II type I receptor(AT₂R)에 의해 그 효과가 매개되기 때문에, 이 수용체를 암호하는 유전자는 본태성 고혈압의 유력한 후보 유전자라고 볼 수 있다. 현재가지의 연구에 의하면, AT₁R 유전자에 존재하는 유전적 변이와 본태성 고혈압과의 관련성에 관해서는 많은 보고들이 있었지만, AT₂R 유전자에 존재하는 유전적 변이 가 본태성 고혈압에 유의한 효과를 나타내는 지에 관해서는 이렇다할 연구 성과가 별로 없는 실정이다. 이에 본 연구에서는 한국인 집단을 대상으로 하여, AT₂R 유전자에 존재하는 C3123A 다형성이 한국인 집단에서 본태성 고혈압과 유의한 관련성이 있는 지를 분석하였다. 이 유전자는 인간의 X 염색체에 존재하기 때문에, 여성인 경우에는 CC, CA및 AA로 이루어진 3유전자형이 존재하지만, 남성인 경우에는 C와 A로 이루어진 2종류의 대립 유전자로 구성되어 있기 때문에, 본 연구에서는 남성과 여성을 개별적으로 나누어서 분석하였다. 연구 결과, AT₂R 유전자에 존재하는 C3123A 다형성은 남녀 모두에서 본태성 고혈압과 유의한 관련성을 나타내지 않았다(P>0.05). 그렇지만, 이 다형성에 대한 대립 유전자 빈도를 서양인 집단과 비교했을 경우에는, 한국인을 대상으로 한 본 연구에서 A 대립 유전자 빈도가 0.33인 반면에 서양인 집단은 그 빈도가 0.43~0.48로 한국인 집단보다 높은 값을 나타내었다. 따라서, AT₂R 유전자에 존재하는 C3123A 다형성과 본태성 고혈압과의 관련성에 대해서는 한국인과 유전적 배경이 다른 서양인 집단을 대상으로 한 추시가 필요할 것으로 사료된다.

Comparative effects of angiotensin II and angiotensin-(4-8) on blood pressure and ANP secretion in rats

  • Phuong, Hoang Thi Ai;Yu, Lamei;Park, Byung Mun;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.667-674
    • /
    • 2017
  • Angiotensin II (Ang II) is metabolized from N-terminal by aminopeptidases and from C-terminal by Ang converting enzyme (ACE) to generate several truncated angiotensin peptides (Angs). The truncated Angs have different biological effects but it remains unknown whether Ang-(4-8) is an active peptide. The present study was to investigate the effects of Ang-(4-8) on hemodynamics and atrial natriuretic peptide (ANP) secretion using isolated beating rat atria. Atrial stretch caused increases in atrial contractility by 60% and in ANP secretion by 70%. Ang-(4-8) (0.01, 0.1, and $1{\mu}M$) suppressed high stretch-induced ANP secretion in a dose-dependent manner. Ang-(4-8) ($0.1{\mu}M$)-induced suppression of ANP secretion was attenuated by the pretreatment with an antagonist of Ang type 1 receptor ($AT_1R$) but not by an antagonist of $AT_2R$ or $AT_4R$. Ang-(4-8)-induced suppression of ANP secretion was attenuated by the pretreatment with inhibitor of phospholipase (PLC), inositol triphosphate ($IP_3$) receptor, or nonspecific protein kinase C (PKC). The potency of Ang-(4-8) to inhibit ANP secretion was similar to Ang II. However, Ang-(4-8) $10{\mu}M$ caused an increased mean arterial pressure which was similar to that by 1 nM Ang II. Therefore, we suggest that Ang-(4-8) suppresses high stretch-induced ANP secretion through the $AT_1R$ and $PLC/IP_3/PKC$ pathway. Ang-(4-8) is a biologically active peptide which functions as an inhibition mechanism of ANP secretion and an increment of blood pressure.

Changes in Adrenal Angiotensin II Receptors in Renin-dependent Hypertensive Rats

  • Lee, Sung-Hou;Lee, Byung-Ho;Shin, Hwa-Sup
    • Archives of Pharmacal Research
    • /
    • 제18권3호
    • /
    • pp.169-172
    • /
    • 1995
  • The changes in blood pressure may relate to the alterations of the responsiveness to vasoconstrictors and vasodilators, and these alterations can arise the modifications in the properties of angiotensin II (AII) receptor. In order to examine the changes of AII receptor in the hypertensive mechanism of renin-dependent hypertensive rats (RHRs; two-kidney, one-ligated type), we compared the equilibrium binding characteristics of $[^3H]$All in adrenal cortex and medulla from RHRs and normotensive rats. The dissociation constants of AII binding in both tissues of RHRs were very similar to those in the respective tissue of normotensive rats. However, the maximum binding was increased from 805 to 1050 fmole/mg protein in the adrenal cortex of RHRs, and decreased from 172 to 126 fmole/mg protein in the adrenal medulla of RHRs. These results imply that the up- and down-regulation of the All receptor population on the cell surface of adrenal glands from RHRs are consorted with the elevation of blood pressure and the activation of renin-angiotensin system.

  • PDF

신동맥내 투여한 Angiotensin II가 신장기능 및 Renin 분비에 미치는 영향 (Effect of Unilateral Renal Arterial Infusion of Angiotensin II on Renal Function and Renin Secretion in Unanesthetized Rabbit)

  • 김종훈;강남부;김영진;김선희;조경우
    • The Korean Journal of Physiology
    • /
    • 제23권2호
    • /
    • pp.363-375
    • /
    • 1989
  • It has been well known that peripheral infusion of angiotensin II results in an increase of blood pressure, and an elevation of aldosterone secretion, and an inhibition of renin relase. However, the direct effect of angiotensin II on renal function has not been clearly established. In the present study, to investigate the effect of angiotensin II on renal function and renin release, angiotensin II (0.3, 3 and 10 ng/kg/min) was infused into a unilateral renal artery of the unanesthetized rabbit and changes in renal function and active and inactive renin secretion rate (ARSR, IRSR) were measured. In addition, to determine the relationship between the renal effect of angiotensin II and adenosine, the angiotensin II effect was evaluated in the presence of simultaneously infused 8-phenyltheophylline (8-PT, 30 nmole/min), adenosine A 1 receptor antagonist. Angiotensin II infusion at dose less than 10 ng/kg/min decreased urine flow, clearances of para-amino-hippuric acid and creatinine, and urinary excretion of electrolytes in dose-dependent manner. The changes in urine flow and sodium excretion were significantly correlated with the change in renal hemodynamics. Infusion of angiotensin II at 10 ng/kg/min also decreased ARSR, but it has no significant effect on IRSR. The change in ARSR was inversely correlated with the change in IRSR. The plasma concentration of catecholamine was not altered by an intarenal infusion of angiotensin II. In the presence of 8-PT in the infusate, the effect of angiotensin II on renal function was significantly attenuated, but that on renin secretion was not modified. These results suggest that the reduction in urine flow and Na excretion during intrarenal infusion of angiotensin II was not due to direct inhibitions of renal tubular transport systems, but to alterations of renal hemodynamics which may partly be mediated by the adenosine receptor.

  • PDF

선천성 고혈압흰쥐 적출대동맥에서 Nitric Oxide와 관련된 이완 반응에 Losartan이 미치는 영향 (Losartan Modifies Nitric Oxide-related Vasorelaxation in Isolated Aorta of Spontaneously Hypertensive Rat)

  • 박봉기;한형수;김중영
    • 대한약리학회지
    • /
    • 제30권3호
    • /
    • pp.337-342
    • /
    • 1994
  • 선천성고혈압흰쥐 (SHR)에서 angiotensin converting enzyme inhibitor (ACEI)를 처치하면 내피세포 의존적 이완이 증진된다고 알려져 있다. 본 실험은 angiotensin II가 nitric oxide (NO)와 관련되어 일어나는 적출 대동맥의 이완력에 변화를 주는지 관찰하고자 angiotensin II 작용 억제를 위해 angiotensin II 수용체 차단제인 losartan과 ACEI인 enalapril을 사용하였으며 혈관에서의 NO는 혈관내피세포에서 생성되는 constitutive NO와 주로 혈관 평활근에서 LPS에 생성되는 inducible NO가 있으므로 이들 양자에 대한 angiotensin II의 작용을 검토하였다. 2주간 losartan (30 mg/kg/day)과 enalapril (10 mg/kg/day)을 처치한 경우 acetylcholine $(10^{-9}\;to\;10^{-5}\;M)$과 histamine $(10^{-8}\;to\;10^{-4}\;M)$에 의한 이완 반응이 증가되었으나 90분간 적출 대동맥에 losartan $(10^{-4}\;M)$ 을 노출시킨 경우는 이완 반응에 변화가 없었다. Phenylephrine $(10^{-7}\;M)$ 을 2시간 간격으로 반복 투여하여 수축시킨 경우 LPS $(100\;{\mu}g/ml)$처치에 의해 시간이 지남에 따라 수축력이 감소되었고 대조군에서는 수축력이 감소되지 않았다. LPS 처치에 따른 phenylephrine에 의한 수축력의 감소는 enalapril이나 losartan을 2주간 처치한 경우에도 영향을 받지 않았다. 이상의 결과로 미루어 아마도 losartan의 내피세포에 대한 작용은 constitutive NO 생성을 증가시키나 inducible NO 생성에는 영향을 미치지 않을 것으로 여겨진다.

  • PDF

Sulfatase 1 mediates the inhibitory effect of angiotensin II type 2 receptor inhibitor on angiotensin II-induced hypertensive mediator expression and proliferation in vascular smooth muscle cells from spontaneously hypertensive rats

  • Kim, Hye Young;Cha, Hye Ju;Kim, Hee Sun
    • Journal of Yeungnam Medical Science
    • /
    • 제34권1호
    • /
    • pp.43-54
    • /
    • 2017
  • Background: Extracellular sulfatases (Sulfs), sulfatase 1 (Sulf1) and sulfatase 2 (Sulf2), play a pivotal role in cell signaling by remodeling the 6-O-sulfation of heparan sulfate proteoglycans on the cell surface. The present study examined the effects of Sulfs on angiotensin II (Ang II)-induced hypertensive mediator expression and vascular smooth muscle cells (VSMCs) proliferation in spontaneously hypertensive rats (SHR). Methods: Ang II receptors, 12-lipoxygenase (12-LO), and endothelin-1 (ET-1) messenger RNA (mRNA) expressions in SHR VSMCs were analyzed by real-time polymerase chain reaction and Western blotting. VSMCs proliferation was determined by [$^3H$]-thymidine incorporation. Results: Basal Sulfs mRNAs expression and enzyme activity were elevated in SHR VSMCs. However, Sulfs had no effect on the basal or Ang II-induced 12-LO and ET-1 mRNA expression in SHR VSMCs. The inhibition of Ang II-induced 12-LO and ET-1 expression by blockade of the Ang II type 2 receptor ($AT_2\;R$) pathway was not observed in Sulf1 siRNA-transfected SHR VSMCs. However, Sulf2 did not affect the action of $AT_2\;R$ inhibitor on Ang II-induced 12-LO and ET-1 expression in SHR VSMCs. The down-regulation of Sulf1 induced a reduction of $AT_2\;R$ mRNA expression in SHR VSMCs. In addition, the inhibition of Ang II-induced VSMCs proliferation by blockade of the $AT_2\;R$ pathway was mediated by Sulf1 in SHR VSMCs. Conclusion: These findings suggest that extracellular sulfatase Sulf1 plays a modulatory role in the $AT_2\;R$ pathway that leads to an Ang II-induced hypertensive effects in SHR VSMCs.

Identification of Phosphatidylcholine-Phospholipase D and Activation Mechanisms in Rabbit Kidney Proximal Tubule Cells

  • Chung, Jin-Ho;Chae, Joo-Byung;Chung, Sung-Hyun
    • BMB Reports
    • /
    • 제29권1호
    • /
    • pp.11-16
    • /
    • 1996
  • The present study showed that receptor-mediated activation of rabbit kidney proximal tubule cells by angiotensin II, the $Ca^{2+}$ ionophore A23187, or the protein kinase C activator phorbol myristate acetate (PMA) all stimulated phospholipase D (PLD). This was demonstrated by the increased formation of phosphatidic acid, and in the presence of 0.5% ethanol, phosphatidylethanol (PEt) accumulation. Angiotensin II leads to a rapid increase in phosphatidic acid and diacylglycerol, and phosphatidic acid formation preceeded the formation of diacylglycerol. This result suggests that some phosphatidic acid seems to be formed directly from phosphatidylcholine hydrolyzed by Pill. On the other hand, EGTA substantially attenuated angiotensin II and A23187-induced PEt formation, and when the cells were pretreated with verapamil angiotensin II-induced Pill activation was completely abolished. These results provide the evidence that calcium ion influx is essential for the agonist-induced Pill activation. In addition, staurosporine, an inhibitor of protein kinase C, strongly inhibited PMA-induced PEt formation, but was ineffective on angiotensin II-induced PEt accumulation. $GTP{\gamma}S$ also stimulates PEt formation in digitonin-permeabilized cells, but pretreatment of the cells with pertussis toxin failed to suppress angiotensin II-induced PEt formation. From these results, we conclude that in the rabbit kidney proximal tubule cells the mechanisms of angiotensin II- and PMA-induced Pill activation are different from each other and mediated via a pertussis toxin-insensitive trimeric G protein.

  • PDF

A Protein Tyrosine Phosphatase Inhibitor, Pervanadate, Inhibits Angiotensin II-Induced β-Arrestin Cleavage

  • Jang, Sei-Heon;Hwang, Si Ae;Kim, Mijin;Yun, Sung-Hae;Kim, Moon-Sook;Karnik, Sadashiva S.;Lee, ChangWoo
    • Molecules and Cells
    • /
    • 제28권1호
    • /
    • pp.25-30
    • /
    • 2009
  • ${\beta}$-Arrestins turn off G protein-mediated signals and initiate distinct G protein-independent signaling pathways. We previously demonstrated that angiotensin $AT_1$ receptorbound ${\beta}$-arrestin 1 is cleaved after $Phe^{388}$ upon angiotensin II stimulation. The mechanism and signaling pathway of angiotensin II-induced ${\beta}$-arrestin cleavage remain largely unknown. Here, we show that protein Tyr phosphatase activity is involved in the regulation of ${\beta}$-arrestin 1 cleavage. Tagging of green fluorescent protein (GFP) either to the N-terminus or C-terminus of ${\beta}$-arrestin 1 induced conformational changes and the cleavage of ${\beta}$-arrestin 1 without angiotensin $AT_1$ receptor activation. Orthovanadate and molybdate, inhibitors of protein Tyr phosphatase, attenuated the cleavage of C-terminal GFP-tagged ${\beta}$-arrestin 1 in vitro. The inhibitory effects of okadaic acid and pyrophosphate, which are inhibitors of protein Ser/Thr phosphatase, were less than those of protein Tyr phosphatase inhibitors. Cell-permeable pervanadate inhibited angiotensin II-induced cleavage of ${\beta}$-arrestin 1 in COS-1 cells. Our findings suggest that Tyr phosphorylation signaling is involved in the regulation of angiotensin II-induced ${\beta}$-arrestin cleavage.

Angiotensin II Promotes Smooth Muscle Cell Proliferation and Migration through Release of Heparin-binding Epidermal Growth Factor and Activation of EGF-Receptor Pathway

  • Yang, Xiaoping;Zhu, Mei J.;Sreejayan, N.;Ren, J.;Du, Min
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.263-270
    • /
    • 2005
  • Transactivation of EGF-receptor (EGFR) by G-protein coupled receptors (GPCRs) is emerging as an important pathway in cell proliferation, which plays a crucial role in the development of atherosclerotic lesion. Angiotensin II (Ang II) has been identified to have a major role in the formation of atherosclerotic lesions, although the underlying mechanisms remain largely unclear. We hypothesize that Ang II promotes the proliferation and migration of smooth muscle cells through the release of heparin-binding epidermal growth factor like growth factor (HB-EGF), transactivation of EGFR and activation of Akt and Erk 1/2, with matrix metalloproteases (MMPs) playing a dispensable role. Primary rat aortic smooth muscle cells were used in this study. Smooth muscle cells rendered quiescent by serum deprivation for 12 h were treated with Ang II (100 nM) in the presence of either GM6001 ($20{\mu}M$), a specific inhibitor of MMPs or AG1478 ($10{\mu}M$), an inhibitor of EGFR. The levels of phosphorylation of EGFR, Akt and Erk 1/2 were assessed in the cell lysates. Inhibition of MMPs by GM6001 significantly attenuated Ang II-stimulated phosphorylation of EGFR, suggesting that MMPs may be involved in the transactivation of EGFR by Ang II receptor. Furthermore Ang II-stimulated proliferation and migration of smooth muscle cells were significantly blunted by inhibiting MMPs and EGFR and applying HB-EGF neutralization antibody, indicating that MMPs, HB-EGF and EGFR activation is necessary for Ang-II stimulated migration and proliferation of smooth muscle cells. Our results suggest that inhibition of MMPs may represent one of the strategies to counter the mitogenic and motogenic effects of Ang II on smooth muscle cells and thereby prevent the formation and development of atherosclerotic lesions.

Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor

  • Cha, Seung Ah;Park, Byung Mun;Kim, Suhn Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.447-456
    • /
    • 2018
  • Angiotensin-(1-9) [Ang-(1-9)], generated from Ang I by Ang II converting enzyme 2, has been reported to have protective effects on cardiac and vascular remodeling. However, there is no report about the effect of Ang-(1-9) on pulmonary hypertension. The aim of the present study is to investigate whether Ang-(1-9) improves pulmonary vascular remodeling in monocrotaline (MCT)-induced pulmonary hypertensive rats. Sprague-Dawley rats received Ang-(1-9) ($576{\mu}g/kg/day$) or saline via osmotic mini-pumps for 3 weeks. Three days after implantation of osmotic mini-pumps, 50 mg/kg MCT or vehicle were subcutaneously injected. MCT caused increases in right ventricular weight and systolic pressure, which were reduced by co-administration of Ang-(1-9). Ang-(1-9) also attenuated endothelial damage and medial hypertrophy of pulmonary arterioles as well as pulmonary fibrosis induced by MCT. The protective effects of Ang-(1-9) against pulmonary hypertension were inhibited by Ang type 2 receptor ($AT_2R$) blocker, but not by Mas receptor blocker. Additionally, the levels of LDH and inflammatory cytokines, such as $TNF-{\alpha}$, MCP-1, $IL-1{\beta}$, and IL-6, in plasma were lower in Ang-(1-9) co-treated MCT group than in vehicle-treated MCT group. Changes in expressions of apoptosis-related proteins such as Bax, Bcl2, Caspase-3 and -9 in the lung tissue of MCT rats were attenuated by the treatment with Ang-(1-9). These results indicate that Ang-(1-9) improves MCT-induced pulmonary hypertension by decreasing apoptosis and inflammatory reaction via $AT_2R$.