• Title/Summary/Keyword: anemometry

Search Result 103, Processing Time 0.022 seconds

Study on the Generation of Turbulent Boundary Layer in Wind Tunnel and the Effect of Aspect Ratio of a Rectangular Obstacle (풍동 내 난류 경계층 생성과 육면체의 형상 변화에 따른 표면 압력 변화 연구)

  • LimM, Hee-Chang;Jeong, Tae-Yoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.791-799
    • /
    • 2008
  • We investigate the flow characteristics around a series of rectangular bodies ($40^d{\times}80^w{\times}80^h$, $80^d{\times}80^w{\times}80^h$ and $160^d{\times}80^w{\times}80^h$) placed in a deep turbulent boundary layer. The study is aiming to understand the surface pressure distribution around the bodies such as the suction pressure in the leading edge, when the flow is normal, which is responsible for producing extreme suction pressures on the roof. The experiment includes wind tunnel work by using HWA (Hot-Wire anemometry) and pressure transducers. The experiments are carried out at three different Reynolds numbers, based on the velocity U at the body height h, of $2.4{\times}10^4$, $4.6{\times}10^4$ and $6.7{\times}10^4$, and large enough that the mean flow is effectively Reynolds number independent. The results include the measurements of the growth of the turbulent boundary layer in the wind tunnel and the surface pressure around the bodies.

Effect of Internal Geometry and Swirler Vane Angle of Nozzle on Spray Characteristics with Distance from Nozzle Tip (노즐의 내부형상 및 스월러 베인각의 변화가 선단거리에 따른 분무특성에 미치는 영향)

  • Jeong, H.C.;Choi, G.M.;Kim, D.J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.1-7
    • /
    • 2005
  • The purpose of this study is to investigate the effect of swirler vane angle and the aspect ratio of swirl chamber of nozzle on the characteristics of single spray. The characteristics of sprat's have been investigated by measuring the spray angle, droplet size and velocity Visualization of spray was conducted to obtain the spray angle and breakup process. The spray characteristics such as droplet size and velocity were measured by Phase Doppler Anemometry(PDA). It was found that the spray angle was increased with increasing the swirler angle. For both sprays, the axial velocity and SMD were decreased with increasing the swirler vane angle. It was also shown that the axial velocity and SMD were decreased with increasing the aspect ratio of swirl chamber The effect of vane angle un the spray characteristics was greater than the aspect ratio of swirl chamber for single spray.

  • PDF

Combustion Instability Analysis of Partially Premixed Model Gas Turbine Combustor with 1D Lumped Method (1D Lumped Method를 이용한 모형 부분 예혼합 가스터빈 연소기의 연소불안정 해석)

  • Kim, Jeongjin;Yoon, Jisu;Joo, Seongpil;Kim, Seongheon;Sohn, Chae Hoon;Yoon, Youngbin
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2017
  • Combustion instability analysis of partially premixed model gas turbine combustor was conducted with 1D lumped method. Flame Transfer Function(FTF) was obtained with variation of fuel composition by Photo Multiplier Tube(PMT) and Hot Wire Anemometry(HWA). Decreasing instability frequency was observed when combustor length increased and multi-mode instability was confirmed. Instability frequency mode was changed while $H_2$ composition rate was increased and had agreement with experimental value. This work confirms that prediction of longitudinal combustion instability mode of partially premixed combustor is possible using 1D lumped method.

Study on combustion instabilities in gas turbine combustors (가스터빈 연소기에서의 연소 불안정 측정에 관한 연구)

  • Kim, Dae-Sik;Lee, Jong-Guen;Santavicca, Domenic
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.430-432
    • /
    • 2011
  • An experimental study of the flame response in a turbulent premixed combustor has been conducted in order to investigate mechanisms for combustion instabilities in lean premixed gas turbine combustor. A lab-scale combustor and mixing section system were fabricated to measure the flame transfer function. Measurements are made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function as a function of the modulation frequency and operating conditions.

  • PDF

A Study of the Flame Transfer Function Characteristics using Cold-flow Transfer Function in a Partially Premixed Model Gas Turbine Combustor (부분 예혼합 가스터빈 연소기에서의 비연소 전달함수 계측으로부터의 화염전달함수 특성 파악)

  • Joo, Seongpil;Kim, Seongheon;Yoon, Jisu;Yoh, Jai-ick;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.54-60
    • /
    • 2017
  • In order to identify the characteristics of the flame transfer function gain, cold-flow transfer function was introduced, which is the part of the combustion instability research. Nitrogen and carbon dioxide was used to obtain the cold-flow transfer function and input/output variables was measured by hot wire anemometry. Density and fluid flow rate affect the cold-flow transfer function gain and peak frequency. In addition, acoustic resonance frequency affects the peak frequency of gain in the fuel feeding line.

An Experimental Study on the Injector-spray Behavior of a Liquid-propellant Thruster (액체추진제 추력기의 인젝터 분무 거동에 대한 실험적 연구)

  • Kim, Jin-Seok;Kim, Sung-Cho;Park, Jeong;Kim, Jeong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.799-804
    • /
    • 2007
  • The behavior of spray emanating from an injector to be employed in a liquid-propellant thrust chamber is investigated by optical measurement techniques. The injector has eight holes, each of which has 30 cant angle from the center-axis with the diameter of 0.406 mm. In order to examine an atomization process according to the spray-generation conditions and the evolution along spray downstream, variational features in the velocity and size of droplets obtained through Dual-mode Phase Doppler An 799emometry (DPDA) are delineated and discussed together with instantaneous plane images captured by using Nd:Yag laser sheet beam. A categorization of spray-flow regime representing the atomization and turbulent nature is made through evaluating the non-dimensional parameters, i.e., Reynolds number and Weber number based upon the theoretical injection velocity. These qualitative and quantitative data of spray breakup will be a firm basis for the design of brand-new thruster

Control of Impinging Jet Heat Transfer Using Mesh Screens (메쉬 스크린을 이용한 충돌제트 열전달 제어에 관한 연구)

  • Jo, Jeong-Won;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.722-730
    • /
    • 2001
  • The local heat transfer of an axisymmetric submerged air jet impinging on a heated flat plate is investigated experimentally with the variation of mesh-screen solidity. The screen installed in front of the nozzle exit modifies the flow structure and local heat transfer characteristics. The mean velocity and turbulence intensity profiles of streamwise velocity component are measured using a hot-wire anemometry. The temperature distribution on the heated flat surface is measured with thermocouples. The smoke-wire flow visualization technique was employed to understand the near-field flow structure qualitatively for different mesh screens. Large-scale toroidal vortices and high turbulence intensity enhance the heat transfer rate in the stagnation region. For a higher solidity, turbulence intensity become higher which increases the local heat transfer at small nozzle-to-plate spacings such as L/D<6. The local and average Nusselt numbers of impinging jet from the $\sigma$(sub)s=0.83 screen at L/D=2 are about 5.6∼7.5% and 7.1% larger than those for the case of no screen, respectively. For the nozzle-to-plate spacings larger than 6, however, the turbulence intensities for all tested screens approach to an asymptotic curve and the mean velocity along the jet centerline decreases monotonically. As the nozzle-to-plat spacing increases for high solidity screens, the heat transfer rate decreases due to the reduction in turbulence intensity and jet momentum.

PIV System for the Flow Pattern Anaysis of Artificial Organs ; Applied to the In Vitro Test of Artificial Heart Valves

  • Lee, Dong-Hyeok;Seh, Soo-Won;An, Hyuk;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.489-497
    • /
    • 1994
  • The most serious problems related to the cardiovascular prothesis are thrombosis and hemolysis. It is known that the flow pattern of cardiovascular prostheses is highly correlated with thrombosis and hemolysis. Laser Doppler Anemometry (LDA) is a usual method to get flow pattern, which is difficult to operate and has narrow measure region. Particle Image Velocimetry (PIV) can solve these problems. Because the flow speed of valve is too high to catch particles by CCD camera, high-speed camera (Hyspeed : Holland-Photonics) was used. The estimated maximum flow speed was 5m/sec and maximum trackable length is 0.5 cm, so the shutter speed was determined as 1000 frames per sec. Several image processing techniques (blurring, segmentation, morphology, etc) were used for the preprocessing. Particle tracking algorithm and 2-D interpolation technique which were necessary in making gridrized velocity pronto, were applied to this PIV program. By using Single-Pulse Multi-Frame particle tracking algorithm, some problems of PIV can be solved. To eliminate particles which penetrate the sheeted plane and to determine the direction of particle paths are these solving methods. 1-D relaxation fomula is modified to interpolate 2-D field. Parachute artificial heart valve which was developed by Seoul National University and Bjork-Shiely valve was testified. For each valve, different flow pattern, velocity profile, wall shear stress and mean velocity were obtained.

  • PDF

Wake Structure of Tip Vortex Generated by a Model Rotor Blade of NACA0015 Airfoil Section (NACA0015익형을 가지는 로터 깃 끝와류의 후류유동구조)

  • Sohn, Yong-Joon;Kim, Jeong-Hyun;Han, Yong-Oun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.210-217
    • /
    • 2011
  • Evolution of tip vortex generated by a model rotor blade which has a symmetric blade section has been investigated by use of the laser doppler anemometry. Swirl and axial velocity components of tip vortex were measured by the phase averaging technique within one revolution of a rotor blade. It was found that tip vortex becomes matured until 27 degrees and diffuses afterwards with diffusing rate becoming slower compared to the case of the asymmetric blade section, but the tip loss was expected to become more substantial. Swirl velocity components were well fit to n=2 model of Vatistas within measured wake ages, showing the self-similarity exists for the swirl velocity components. The axial components were followed with Gaussian profiles, but had much higher peak values than those of the symmetric blade section.

The Effects of Fuel Temperature on the Spray and Combustion Characteristics of a DISI Engine (직접분사식 가솔린 엔진에서 연료 온도에 따른 팬형 분무 및 연소 특성의 변화)

  • Moon, Seok-Su;Abo-Serie, Essam;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.103-111
    • /
    • 2006
  • The spray behavior of direct-injection spark-ignition(DISI) engines is crucial for obtaining the required mixture distribution for optimal engine combustion. The spray characteristics of DISI engines are affected by many factors such as piston bowl shape, air flow, ambient temperature, injection pressure and fuel temperature. In this study, the effect of fuel temperature on the spray and combustion characteristics was partially investigated for the wall-guided system. The effect of fuel temperature on the fan spray characteristics was investigated in a steady flow rig embodied in a wind tunnel. The shadowgraphy and direct imaging methods were employed to visualize the spray development at different fuel temperatures. The microscopic characteristics of spray were investigated by the particle size measurements using a phase Doppler anemometry(PDA). The effect of injector temperature on the engine combustion characteristics during cold start and warming-up operating conditions was also investigated. Optical single cylinder DISI engine was used for the test, and the successive flame images captured by high speed camera, engine-out emissions and performance data have been analyzed. This could give the way of forming the stable mixture near the spark plug to achieve the stable combustion of DISI engine.