• 제목/요약/키워드: and wave direction of the dynamic response

Search Result 43, Processing Time 1.832 seconds

각종 매설관의 강제진동거동에 관한 연구 (A Study on the Forced Vibration Responses of Various Buried Pipelines)

  • 정진호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1334-1339
    • /
    • 2006
  • Dynamic response of buried pipelines both in the axial and the transverse directions on concrete pipe and steel pipe, FRP pipe were investigated through a forced vibration analysis. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF

Wave Response Analysis and Future Direction of Mega-Float

  • Park, Sung-Hyeon
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2001년도 Proceeding of KIN-CIN Joint Symposium 2001 on Satellite Navigation/AIS, lntelligence , Computer Based Marine Simulation System and VDR
    • /
    • pp.153-168
    • /
    • 2001
  • In the country where the population concentrates in the metropolis with the narrow land, development of th ocean space is necessary. Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And very large floating structure are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave eternal force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structure part of this model. And the analysis is carried out using the boundary element method in the fluid part. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

단부 경계조건을 고려한 매설관의 동적응답 해석 (II) (Analysis of Seismic Response of the Buried Pipeline with Pipe End Conditions (II))

  • 이병길;박병호;정진호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.328-337
    • /
    • 2005
  • This work reports results of our study on the dynamic responses of the buried pipelines both along the axial and the transverse directions under various boundary end conditions. We have considered three cases, i.e., the free ends, the fixed ends, and the fixed-free ends for the axial direction, and three more cases including the guided ends, the simply supported ends, and the supported-guided ends for the transverse direction. In order to investigate the effect of the boundary end conditions for the dynamic responses of the buried pipeline, we have devised a computer program to find the solutions of the formulae on the dynamic responses (displacements, axial strains, and bending strains) under the various boundary end conditions considered in this study. The dynamic behavior of the buried pipelines for the forced vibration is found to exhibit two different forms, a transient response and a steady state response, depending on the time before and after the transfer of a seismic wave on the end of the buried pipeline. The former is identified by a slight change in its behavior before the sinusoidal-shaped seismic wave travels along the whole length of the pipeline whereas the latter by the complete form of a sinusoidal wave when the wave travels throughout the pipeline. The transient response becomes insignificant as the wave speed increases. We have observed a resonance when the mode wavelength matches the wavelength of the seismic wave, where the mode number(k) of resonance for the axial direction is found to be $\overline{\omega}/{\pi}V+1/2$ for the fixed-free ends, $\overline{\omega}/{\pi}V+1$ for the free ends, and $\overline{\omega}/{\pi}V$ for the fixed ends, respectively. By adding 10 more modes to the mode number(k) of resonance, we were able to study all the dynamic responses of the buried pipeline for the axial direction. On the other hand, we have not been able to observe a resonance in the analysis for the transverse direction, because the dynamic responses are found to vanish after the seventh mode. From the results of the dynamic responses at the many points of the pipeline, we have found that the responses appeared to be dependent critically on the boundary end conditions. Such effects are found to be most prominent especially for the maximum values of the displacement and the strain and its position.

  • PDF

A study on response analysis of submerged floating tunnel with linear and nonlinear cables

  • Yarramsetty, Poorna Chandra Rao;Domala, Vamshikrishna;Poluraju, P.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • 제9권3호
    • /
    • pp.219-240
    • /
    • 2019
  • This paper presents the comparison between SFT response with linear and nonlinear cables. The dynamic response analysis of submerged floating tunnel (SFT) is presented computationally with linear and nonlinear tension legs cables. The analysis is performed computationally for two wave directions one at 90 degrees (perpendicular) to tunnel and other at 45 degrees to the tunnel. The tension legs or cables are assumed as linear and non- linear and the analysis is also performed by assuming one tension leg or cable is failed. The Response Amplitude Operators (RAO's) are computed for first order waves, second order waves for both failure and non-failure case of cables. For first order waves- the SFT response is higher for sway and heave degree of freedom with nonlinear cables as compared with linear cables. For second order waves the SFT response in sway degree of freedom is bit higher response with linear cables as compared with nonlinear cables and the SFT in heave degree of freedom has higher response at low time periods with nonlinear cables as compared with linear cables. For irregular waves the power spectral densities (PSD's) has been computed for sway and heave degrees of freedom, at $45^0$ wave direction PSD's are higher with linear cables as compared with nonlinear cables and at $90^0$ wave direction the PSD's are higher with non-linear cables. The mooring force responses are also computed in y and z directions for linear and nonlinear cables.

Mega-Float의 동적 응답해석에 관한 연구 (A study on the Dynamic Response Analysis of Mega-Float Offshore Structure)

  • 박성현;박석주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.161-165
    • /
    • 2001
  • Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And mega-float structure are now being considered for various applications such as floating airports, offshore cities and so on. This mega-float structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the dynamic response of the mega-float structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

부유체식 바지선의 동적 응답해석에 관한 연구 (A study on the Dynamic Response Analysis of Floating Offshore Barge)

  • 박성현;박석주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.973-979
    • /
    • 2002
  • Recently, floating offshore structure is studied as one of the effective utilization of the ocean space. And floating structure are now being considered for various applications such as floating airports, offshore cities and so on. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the dynamic response of the floating structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

대형 부류해양구조물의 파낭중 응답의 저감해석에 관한 연구(제1보) (A Study on the Reduction Analysis of the Response of the Mega-Float Offshore Structure in Regular Wave (1st Report))

  • 박성현;박석주
    • 한국항해학회지
    • /
    • 제24권1호
    • /
    • pp.85-95
    • /
    • 2000
  • In the country where the population concentrates in the metropolis with the narrow land, development of the ocean space is necessary. Recently, mega-float offshore structure has been studied as one of the effective utilization of the ocean space. And very large floating structures are now being considered for various applications such as floating airports, offshore cities and so on. This very large structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. And it is necessary to examine the effect of ocean wave external force received from the natural environment. In this study, the mat-type large floating structure is made to be analytical model. And the analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. The validity of analysis method is verified in comparison with the experimental result in the Japan Ministry of Transport Ship Research Institution. In order to know the characteristics of the dynamic response of the large floating structures, effects of wavelength, bending rigidity of the structure, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

  • PDF

Mega-Float의 동적 특성 해석 (Dynamic Characteristics Analysis of Mega-Float Offshore Structure)

  • 박성현;박석주
    • 대한자원환경지질학회:학술대회논문집
    • /
    • 대한자원환경지질학회 2001년도 춘계 공동학술발표회 논문집
    • /
    • pp.66-70
    • /
    • 2001
  • Recently, mega-float offshore structure is studied as one of the effective utilization of the ocean space. And mega-structure are now being considered for various applications such as floating airports, offshore cities and so on. This mega-float structure is relatively flexible compared with real floating structures like large ships. when we estimate dynamic responses of these structures in waves, the elastic deformation is important, because vertical dimension is small compared with horizontal. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the dynamic response of the mega-float structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

동하중재하시 지반진동에 관한 실험적 연구 (An Experimental Study of Ground Motion under the Dynamic Load)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.126-131
    • /
    • 1997
  • Recently, the ground motion occurred by vehicles or trains has been recognized one of the major factors of damage of structures nearly the motion source. To isolate the environments from ground motions, it is necessary to understand the wave propagation in half spaces. Especially, Rayleigh wave is the primary concern because it transmits a major portion of the total source energy and decays the energy more slowly with response to distance than the other waves. In this study, the preliminary data(wave length and damping effect) to design the isolating system are obtained. For this, a field dynamic test is performed, using the exciter which can generate the 100kN vertical cyclic load in the range of 1-60 Hz is used. The fifteen accelerometers to measure the ground response are set up in 3 radial direction at intervals of 10 meters in each row. The wave lengths are calculated using the distance and the phase between the measuring points. The damping effects of the Rayleigh-wave are also observed from the experiments.

  • PDF

축대칭 부표의 규칙파중 운동특성에 대한 연구 (A Stuty on the Dynamic Response of an Axisymmetric Buoy in Regular Waves)

  • 홍기용;김효철;최항순
    • 대한조선학회지
    • /
    • 제23권3호
    • /
    • pp.1-9
    • /
    • 1986
  • Herein the dynamic response of an axisymmetric buoy to regular wave is studied within linear potential theory. The buoy has a particular geometry so that it should experience minimum wave-exiting force on the vertical direction at a precribed wave number in water of finite depth. Invoking the Green's theorem a velocity potential is generated by distributing pulsating sources and doublets on the immersed surface of the buoy at its mean position. Hydrodynamic forces and moments are obtained approximately by summation of the products of linear pressure and directional mesh area over the immersed surface. Model tests are carried out to measure the wave-exciting forces, hydrodynamic forces and motion responses. The experimental results in general agree fairly well with the numerical ones. From the analytical and experimental works it is found that the pitching motion and its coupling effect affect significantly the motion characteristics of the freely-floating axisymmetric buoy in regular waves.

  • PDF