• Title/Summary/Keyword: and water purification

Search Result 1,017, Processing Time 0.031 seconds

Design and operating parameters of multi-functional floating island determined by basic experiments of unit processes (단위공정별 기초실험을 통한 다기능 융복합부도의 설계·운전인자 도출)

  • Lim, Hyun-Man;Jang, Yeo-Ju;Jung, Jin-Hong;Yoon, Young-Han;Park, Jae-Roh;Kim, Weon-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.487-497
    • /
    • 2018
  • Water quality improvement processes for stagnant area consist mainly of technologies applying vegetation and artificial water circulation, and these existing technologies have some limits to handle pollution loads effectively. To improve the purification efficiency, eco-friendly technologies should be developed that can reinforce self-purification functions. In this study, a multi-functional floating island combined with physical chemical biological functions ((1) flotation and oxidization using microbubbles, (2) vegetation purification and (3) bio-filtration with improved adsorption capacity) has been developed and basic experiments were performed to determine the optimal combination conditions for each unit process. It has been shown that it is desirable to operate the microbubble unit process under conditions greater than $3.5kgf/cm^2$. In vegetation purification unit process, Yellow Iris (Iris pseudacorus) was suggested to be suitable considering water quality, landscape improvement and maintenance. When granular red-mud was applied to the bio-filtration unit process, it was found that T-P removal efficiency was good and its value was also stable for various linear velocity conditions. The appropriate thickness of filter media was suggested between 30 and 45 cm. In this study, the optimal design and operating parameters of the multi-functional floating island have been presented based on the results of the basic experiments of each unit process.

The Purification Capacity of Zizania latifolia on Wetlands of Munpyeong Stream

  • Kim, Ha-Song;Ihm, Byung-Sun
    • The Korean Journal of Ecology
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2002
  • This study examined the changes of water quality in relation to distribution of hydrophytes, and the purification capacity of Zizania latifolia to improve the effluent from Munpyeong stream from March 1997 to December 1999. While the concentration of nitrogen and phosphorous in water were increased during the farming season, those decreased, during the streaming down to paddy and drainage areas. In investigated sites, the Z. latifolia was dominant community according to the development of the natural wetlands. Furthermore, it formed a large community owing to its high adaptability to environmental changes in the agriculture lands. In September, the leaves productivity of the Z. latifolia were 4,032g D.W/$m^2$and roots were 7,680gD.W/$m^2$. The purification capacity of the Z. latifolia for NH$_3$-N, $No_3$-N, and PO$_4$-P were 13.41, 17.07, and 4.58 respectively during 5 days. The results suggested that it needs to establish wetlands vegetated by hydrophytes to improve the water quality of the effluent from agricultural lands.

The development of industrial secure L2 switch and introduction example for management and security improvement of supervisory control network in purification plant (정수장 감시제어망의 관리와 보안개선을 위한 산업용 보안 L2스위치 개발 및 적용사례)

  • Kim, Yunha;Yu, Chool;Oh, Eun;Kim, Chanmoon;Park, Ikdong;Kim, Yongseong;Choi, Hyunju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.5
    • /
    • pp.329-339
    • /
    • 2019
  • Recently, the advancement of information and communication technology(ICT) is expanding the connectivity through Internet of Things(IoT), and the media of connection is also expanding from wire/cable transmission to broadband wireless communication, which has significantly improved mobility. This hyperconnectivity has become a key element of the fourth industrial revolution, whereas the supervisory control network of purification plants in korea is operated as a communication network separated from the outside, thereby lagging in terms of connectivity. This is considered the best way to ensure security, and thus there is hardly any consideration of establishing alternatives to operate an efficient and stable communication network. Moreover, security for management of a commercialized communication network and network management solution may be accompanied by immense costs, making it more difficult to make new attempts. Therefore, to improve the conditions for the current supervisory control network of purification plants, this study developed a industrial security L2 switch that supports modbus TCP(Transmission Control Protocol) communication and encryption function of the transmission section. As a result, the communication security performance improved significantly, and the cost for implementing the network management system using Historical Trend and information of HMI(Human Machine Interface) could be reduced by approximately KRW 200 million. The results of this study may be applied to systems for gas, electricity and social safety nets that are infrastructure communication networks that are similar to purification plants.

A Study on Water Purification Effect of Media Block Using Porous Ceramics and Zeolite (다공성 세라믹과 제올라이트를 활용한 수질정화미디어블럭의 효과 연구)

  • Jeon, Sung-yool;Koo, Bon-hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.5
    • /
    • pp.59-66
    • /
    • 2017
  • Preeminent water treatment plans are essential to preserve the water quality of aquatic biotopes. Previous studies have not been sufficient to provide cost-effective maintenance method since they focused only on the purification of deteriorated water that requires a continuous supply of clean water. This study proposes an economical method of water quality maintenance using water treatment media block constructed vertically using porous ceramics, zeolite, and river pebble. The water treatment media block does not require a separate purification area because it functions as a purifier within the ecological pond which can maximize the biotope area. To evaluate the performance of the water treatment media block, we longitudinally tracked the change of water quality indicators (pH, TDS, COND, DO, T-P, T-N, COD) suggested by Water Environment Standards, Ministry of Environment, Republic of Korea. We compared the water quality of one control (A: general ecological pond composition method of the laminated structure) and two experimental groups (B: a combination of aquatic plants and a water treatment media block, C: a water treatment media block only). As a result, we confirmed that the water treatment media block is an efficient and economical method to maintaining the water quality of the ecological pond for a long time. The water treatment media block will be a great help in providing a better aquatic biotope space for aquatic insects and fishes living in clear water.

Application of membrane distillation process for tap water purification

  • Gryta, Marek
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2010
  • Membrane distillation process was used for purification of pre-treated natural water (tap water). The rejection of inorganic and organic compounds in this process was investigated. The obtained rejection of inorganic solutes was closed to 100%, but the volatile organic compounds (VOCs) diffused through the membrane together with water vapour. The content of trihalomethanes (THMs) in the obtained distillate was two-three fold higher than that in the feed, therefore, the rejection of the total organic compounds present in the tap water was reduced to a level of 98%. The intensive membranes scaling was observed during the water separation. The morphology and composition of the fouling layer was studied using scanning electron microscopy coupled with energy dispersion spectrometry. The influence of thermal water pre-treatment performed in a heat exchanger followed by filtration on the MD process effectiveness was evaluated. This procedure caused that significantly smaller amounts of $CaCO_3$ crystallites were deposited on the membrane surface, and a high permeate flux was maintained over a period of 160 h.

A Study on the Development of Design Model of Ecological Park as Stormwater Storage Facilities (저류지 생태공원 설계모형 개발에 관한 연구)

  • Byeon, Wooil
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • The purpose of this study is to develop design model of ecological park as stormwater storage facilities. The results are as follows : First, the design model of ecological park as stormwater storage facilities consider ecological and landscape characteristics such as high efficiency of land use, function as disaster prevention, ecological water purification, formation of habitat for flora and fauna. Second, this study demonstrates two types of plane structure and eight types of designed section. They can be combined and designed depending on conditions of each site. The facilities of stormwater storage conduct disaster prevention system and ecological park. Retention pond in stormwater storage facilities for ecological park also should be made for ecological restoration in the site. Third, the ecological park provide the basis for ecological network from in-site to out-site. Therefore its conservation and restoration plan consider the ecosystems of the site. Fourth, the most important factor for maintenance and management for retention pond is keeping water quality. Sustainable Structured wetland Biotop system is suggested for ecological water purification system in the retention pond which is one of the constructed wetland system using multi-celled aquatic plant and pond. This system can also provide habitat for animals and plants, water friendly park for men, and beautiful landscape.

Application of tidal energy for purification in fresh water lake

  • Jung, Rho-Taek;Isshiki, Hiroshi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.212-225
    • /
    • 2015
  • In order to preserve the quality of fresh water in the artificial lake after the reclamation of an intertidal flat at the mouth of a river, we suggest two novel methods of water purification by using tidal potential energy and an enclosed permeable embankment called an utsuro (Akai et al., 1990) in the reclaimed region. One method uses an inflatable bag on the seabed within an utsuro, while the other uses a moored floating barge out of a dyke. Each case employs a subsea pipe to allow flow between the inside and outside of the utsuro. The change in water level in the utsuro, which is pushed through the pipe by the potential energy outside, caused circulation in the artificial lake. In this paper, we analyzed the inflatable bag and floating barge motion as well as the pipe flow characteristics and drafts as given by a harmonic sea level, and compared the theoretical value with an experimental value with a simple small model basin. The numerical calculation based on theory showed good agreement with experimental values.

Development of a Concentration Prediction Model for Disinfection By-product according to Introduce the Advanced Water Treatment Process in Water Supply Network (고도정수처리에 따른 상수도 공급과정에서의 소독부산물 농도 예측모델 개발)

  • Seo, Jeewon;Kim, Kibum;Kim, Kibum;Koo, Jayong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.421-430
    • /
    • 2017
  • In this study, a model was developed to predict for Disinfection By-Products (DBPs) generated in water supply networks and consumer premises, before and after the introduction of advanced water purification facilities. Based on two-way ANOVA, which was carried out to statistically verify the water quality difference in the water supply network according to introduce the advanced water treatment process. The water quality before and after advanced water purification was shown to have a statistically significant difference. A multiple regression model was developed to predict the concentration of DBPs in consumer premises before and after the introduction of advanced water purification facilities. The prediction model developed for the concentration of DBPs accurately simulated the actual measurements, as its coefficients of correlation with the actual measurements were all 0.88 or higher. In addition, the prediction for the period not used in the model development to verify the developed model also showed coefficients of correlation with the actual measurements of 0.96 or higher. As the prediction model developed in this study has an advantage in that the variables that compose the model are relatively simple when compared with those of models developed in previous studies, it is considered highly usable for further study and field application. The methodology proposed in this study and the study findings can be used to meet the level of consumer requirement related to DBPs and to analyze and set the service level when establishing a master plan for development of water supply, and a water supply facility asset management plan.

Feasibility for Horticultural Use of Korean Native Water Plants (한국산 수생식물의 원예적 이용에 관한 연구)

  • Lee, Jong-Suk;Kim, Soo-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.1
    • /
    • pp.41-50
    • /
    • 2003
  • The feasibility as floricultural crops and water garden plant materials of Korean native water plants was investigated. Propagation type, growing and flowering time were observed for development as water garden, interior aquarium plant and water purification materials. Flowering time of the water plant was 7 species in May, 28 species in June, 49 species in July, 55 species in August, 47 species in September, and 17 species in October. Beautiful flowering water plants were Nymphaeaceae, Nymphoides peltata, Nymphoides indica, Monochoria korsakowii, Iris pseudacorus, Iris laevigata, and etc. Ornamental leafy water plants were Ceratopteris thalictroides, Ludwigia ovalis, Myriophyllum verticillatim, Limnophila sessiliflora, Blyxa aubertii, Blyxa echinosperma, Vallisneria asiatica, Hydrilla verticillata and Eleocharis acicularis etc. Isoetes japonica, Isoetes coreana and Isoetes sinensis were propagated by spore. Blyxa aubertii, Blyxa echinosperma, Myriophyllum verticillatim, Nuphar japonicum, Nelumbo nucifera, Ottelia alismoides, Sagittaria aginashi, Trapa japonica, and Trapa natans were propagated by seed. Persicaria amphibia, Ceratophyllum demersum (hornwort), Myriophyllum verticillatim, Myriophyllum spicatum, Oenanthe javanica, Potamogeton crispus, Hydrilla verticillata and Acorus calamus were propagated by division. And Vallisneria asiatica, Hydrilla verticillata and Phragmites japonica were propagated by runner. Ceratophyllum demersum (hornwort), Myriophyllum verticillatim, Myriophyllum spicatum, Limnophila sessilifera were propagated by adventitious bud. Ceratopteris thalictroides was propagated by leaf cutting. The 35 genera, 68 species of water plants were available for horticultural use. The 45 species such as Iris laevigata, Eleocharis acicularis, Menyanthes trifoliata, Nymphaea minima, Nuphar pumilum, Nymphoides coreana, Nymphoides peltata, Nymphoides indica, Nymphaea tetragona (water lily), and Typha latifolia could be use for water garden plant. The 21 species such as Limnophila sessilifera, Vallisneria asiatica, Ceratophyllum demersum and Hydrilla verticillata available for indoor aquarium. The 19 species such as Ottelia alismoides, Oenanthe javanica, Limnophila sessilifera and Blyxa echinosperma could be culture in container. The 27 species such as Trapa japonica, Trapa incisa, Phramites commuris (reed), Phragmites japonica, and Zizania latifolia were usable for water purification plant materials.

An Experimental Basic Study of Water Purification Function due to Spit in Small Estuary (하구에 형성된 소규모 모래톱의 수질정화 기능에 관한 기초적 연구)

  • Park, Sang-Kil;Kim, Byung-Dal;Jeong, Seong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.8-15
    • /
    • 2007
  • This study is intended to examine the relationship between the magnitude of sand spit in the estuary of the stream and improvement of the quality of water that flaws into the sea, by means of hydraulic experimentation. In order to determine the effect of improvements of water quality when river flow is stagnant, the estuary flows into the sea through the small sand spit, and a two-dimensional physical model experiment was carried out. Distribution of concentration was decreased in response to an increase in length of sand spit and time. The experimental results are compared with theoretical results, based on the solution of the equation. Also, there are functions of influx prevention of salt wedge and purification of pollution water due to sand spit in small estuary.