• Title/Summary/Keyword: and unsteady compressible flows

Search Result 61, Processing Time 0.023 seconds

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

Effect of the Shape of a Guide Grill Above a Resonance Type Sound Absorbing Panel on Intake Flow into a Resonator (공명 흡음판 위 가이드 그릴의 형상이 공진기 흡입 유동에 미치는 영향)

  • Bae, Hyunwoo;Sung, Jaeyoung;Lee, Dong Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.3
    • /
    • pp.182-188
    • /
    • 2016
  • This study investigates cavity flows through a guide grill above a resonator. Vortex distributions and intake flows are simulated for various shapes of the guide grill. The flows are assumed to be compressible, unsteady, and turbulent. Numerical simulations are conducted using a large eddy simulation (LES) model. To analyze the effect of the guide grill shape, three cavity lengths (0.2H, 0.6H, and 1.0H) and cavity angles ($30^{\circ}$, $45^{\circ}$ and $60^{\circ}$) are considered based on resonator height (H). The results show that the vortex generated in the resonator by cavity flow increases with cavity length. Thus, the intake flow is minimum at the smallest cavity length and angle. However, when cavity length is equal to resonator height, the intake flow decreases. The maximum intake flow occurs at a cavity angle $45^{\circ}$ at higher cavity lengths owing to the interaction between the vortex in the resonator and intake flow.

Numerical investigation into flow noise source of a convergent-divergent nozzle in high pressure pipe system using wavenumber-frequency analysis (파수-주파수 분석을 통한 고압 배관 내 수축 확장 노즐의 유동 소음원에 대한 수치적 연구)

  • Ku, Garam;Lee, Songjune;Kim, Kuksu;Cheong, Cheolung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.314-320
    • /
    • 2017
  • A pressure relief valve is generally used to prevent piping systems from being broken due to high pressure gas flows. However, the sudden pressure drop caused by the pressure relief valve produces high acoustic energy which propagates in the form of compressible acoustic waves in the pipe and sometimes causes severe vibration of the pipe structure, thereby resulting in its failure. In this study, internal aerodynamic noise due to valve flow is estimated for a simple contraction-expansion pipe by combining the LES (Large-Eddy Simulation) technique with the wavenumber-frequency analysis, which allows the decomposition of fluctuating pressure into incompressible hydrodynamic pressure and compressible acoustic pressure. In order to increase the convergence, the steady Reynolds-Averaged Navier-Stokes equations are numerically solved. And then, for the unsteady flow analysis with high accuracy, the unsteady LES is performed with the steady result as the initial value. The wavenumber-frequency analysis is finally performed using the unsteady flow simulation results. The wavenumber-frequency analysis is shown to separate the compressible pressure fluctuation in the flow field from the incompressible one. This result can provide the accurate information for the source causing so-called acoustic-induced-vibration of a piping system.

THE STUDY OF AERO-ACOUSTICS CHARACTERISTIC BY BOUNDARY CONDITIONS (경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.75-80
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by several boundary conditions. In this simulation, a high-order and high-resolution numerical schemes are used for the accurate computation of compressible flow with several boundary conditions including characteristic boundary conditions as well as extrapolation and zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated with measurement datum and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. Secondary frequency is predicted by three kinds of boundary conditions characteristic.

  • PDF

Development of Optimized Compact Finite Difference Schemes (최적화된 집적 유한 차분법을 위한 내재적 시간전진 기법의 개발)

  • Park N. S.;Kim J. W.;Lee D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.7-12
    • /
    • 1998
  • Optimized high-order compact(OHOC) schemes were proposed, which have high spatial order of truncation and resolution to simulate the aeroacoustic problems due to unsteady compressible flows. Generally, numerical schemes are categorized explicit or implicit by time-marching method. In this research, OHOC differences which were developed with explicit time-marching method is used to have implicit formulation and the implicit OHOC differences result in block hepta-diagonal matrix. This paper presents the comparisons between the explicit and implicit OHOC schemes with a second order accuracy of time in the 1-d linear wave convection problem, and between the explicit OHOC scheme of 4th-order accuracy in time and the implicit OHOC scheme of 1st-order accuracy in tine for the 1-d nonlinear wave convection problem. With these comparisons, the characteristics of implicit OHOC scheme are shown in the point of CFL number.

  • PDF

Characteristics of Tumble Flow in Cylinder of 4 Valve Gasoline Engine by Using Particle Tracking Method (입자 추적법을 이용한 4 밸브 가솔린 기관의 실린더 내 텀블 유동 특성)

  • Lee, Chang-sik;Chon, Mun-soo;Chung, Sung-hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1178-1184
    • /
    • 1999
  • The in-cylinder flow field of gasoline engine comprises unsteady compressible turbulent flows caused by the intake port, combustion chamber geometry and the change of the spatial shape. Thus the quantitative analysis of the in-cylinder bulk flow plays an important role in the improvement of engine performances and the reduction of exhaust emission. The influences of tumble intensifying valve (TIV) and swirl intensifying valve (SIV), and various intake-flow conditions are compared with the tumble ratio obtained by the measured results of the in-cylinder gas flow. In order to obtain the quantitative analysis of the in-cylinder gas flows of gasoline engine this investigation applied the particle tracking method to the analysis of gas flow characteristics. Various intake conditions such as tumble and swirl intensifying valve, the deactivated condition of one valve among two intake valves, and the other factors of gas flow are considered.

THE STUDY OF AERO-ACOUSTICS CHARACTERISTICS BY THE BOUNDARY CONDITIONS OF HIGH ORDER SCHEME (고해상도 수치기법의 경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by appling different four boundary conditions. The high-order and high-resolution numerical schemes are used for discrete accurate computation of compressible flow. The four boundary conditions include extrapolation, characteristic boundary condition, zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated against measurement data and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. The characteristics of secondary frequency is predicted by three kinds of boundary conditions.

DEVELOPMENT OF A 2-D GAS-KINETIC BGK SOLVER FOR CONTINUUM AND TRANSITIONAL FLOWS ON UNSTRUCTURED MESHES (비정렬 격자계에서 연속체 및 천이 영역 유동 해석을 위한 2차원 Gas-Kinetic BGK 해석자 개발)

  • Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • In the present study, 2-D gas-kinetic flow solver on unstructured meshes was developed for flows from continuum to transitional regimes. The gas-kinetic BGK scheme is based on numerical solutions of the BGK simplification of the Boltzmann transport equation. In the initial reconstruction, the unstructured version of the linear interpolation is applied to compute left and right states along a cell interface. In the gas evolution step, the numerical fluxes are computed from the evaluation of the time-dependent gas distribution function around a cell interface. Two-dimensional compressible flow calculations were performed to verify the accuracy and robustness of the current gas-kinetic approach. Gas-kinetic BGK scheme was successfully applied to two-dimensional steady and unsteady flow simulations with strong contact discontinuities. Exemplary hypersonic viscous simulations have been conducted to analyze the performances of the gas-kinetic scheme. The computed results show fair agreement with other standard particle-based approaches for both continuum part and transitional part.

The Unsteady Cavity Flow Oscillation in Supersonic Moisture Air Stream (초음속 습공기 유동에서 비정상 공동유동의 진동)

  • Shin, Choon-Sik;Lee, Jong-Sung;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.341-344
    • /
    • 2008
  • Numerical simulations have been carried out for a supersonic two-dimensional flow over open, rectangular cavities (length-to-depth ratios are L/D = 1.0) in order to investigate the effect of non-equilibrium condensation of moist air on supersonic flows around the cavity for the flow Mach number 1.83 at the cavity entrance. In the present computational investigation, a condensing flow was produced by an expansion of moist air in a Laval nozzle. The results obtained showed that in the case with non-equilibrium condensation for L/D = 1.0, amplitudes of oscillation in the cavity became smaller than those without the non-equilibrium condensation. Furthermore, the occurrence of the non-equilibrium condensation reduced the peaks of power spectrum density and the frequency of the flow field oscillation increased in comparison with the case of $S_0$ = 0.

  • PDF