• Title/Summary/Keyword: and ultrasonic sensors

Search Result 527, Processing Time 0.023 seconds

Sonar Map Construction Based on Acoustics Theory for Autonomous Mobile Robots (음향학에 기반한 자율이동로봇의 초음파 확률격자지도 작성)

  • Lee Y.C.;Lee S.J.;Lim J.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.400-403
    • /
    • 2005
  • The sonar sensors can be divided into a piezo type and an electrostatic type according to a principle of an operating system. The electrostatic type of a sonar sensor is used for map building in this paper. If we know the characteristics of sonar sensor, we can derive the ultrasonic pressure equation from an acoustics theory. We, therefore, developed Ultrasonic Pressure Probabilistic Model (UPPM) to consider the sound pressure in the probability updating process. In this paper, we found that the quality of the resulting probability map is considerably improved, through combining the UPPM with the grid-based mapping algorithm.

  • PDF

Development of experimental water level measuring device using an Arduino and an ultrasonic sensor (아두이노와 초음파 센서를 이용한 실험용 수위 측정 장치 개발)

  • Yoo, Moonsung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.143-147
    • /
    • 2018
  • Water levels are measured in various fields such as sewage treatment plants, water treatment plants, rivers, dams, factory storages' tanks. Ultrasonic instruments for water level measurement are expensive and are used for industrial field. Rapid advances in electronics have made it possible to build a wide variety of measurement, monitoring and control functions at low cost. This study was started to make ultrasonic level measurement system at low price. The system was constructed with an Arduino, an ultrasonic sensor and a temperature sensor for use in the experiment. The ultrasonic sensor measures the time from the sensor to the liquid surface. The temperature sensor measures the atmospheric temperature and improves the accuracy of the ultrasonic distance measurement by correcting the sound speed. Arduino controls measurements and calculates the water level. All components of the system are assembled into a device holder. Experiments with this system show that the water level measured by the system is very close to the actual value. This system is also inexpensive and easy to install and maintain, making it suitable for laboratory use.

Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes (초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템)

  • Park, Jong-Hyun;Choo, Young-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.

Fabrication and characteristics of multilevel acoustic Fresnel lens for ultrasonic transducer for diagnostic imaging (영상진단용 초음파 트랜스듀서를 위한 멀티레벨 음향 프레넬 렌즈의 제작 및 특성)

  • Kim, Dong-Hyun;Ha, Kang-Lyeol;Kim, Moo-Joon;Kim, Jung-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2009
  • A multilevel acoustic Fresnel lens (MAFL) for the ultrasonic imaging transducer of which center frequency is approximately 5.MHz was newly designed and fabricated. The phase level of the lens was 64, and the focal length and the aperture width were 30.mm and 11.mm, respectively. The characteristics of impulse response, acoustic field and imaging performance of the transducer attached the lens were compared with the transducer attached a conventional refraction type acoustic lens (RAL). The results show that the center frequency, the loop sensitivity, and the focal depth of the MAFL transducer were higher or larger than those of the RAL transducer by approximately 0.2.MHz, 1.4.dB, and 2.mm, respectively. Consequently, it was shown that the brighter acoustic images with higher lateral resolution and the increased imaging performance for deep targets can be obtained by using the MAFL transducer.

Realization for Automatic Stock Cubic Measuring and Distributing Management Embedded System with 3D Ultrasonic Sensing (3D 초음파센싱 자동물류부피측정 및 분류관리 임베디드시스템 구현)

  • Lee, Eun-Eok;Ryu, Kwang-Rryol;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.285-288
    • /
    • 2007
  • A realization for automatic stock cubic measuring and distributing management embedded system with 3 dimensional ultrasonic sensing is presented in this paper. The height and width of cubic are measured by comparing the 3 values from 3 ultrasonic sensors with reference when an object is passing the conveyer and length is calculated by the passing time and velocity, compensate cubic values for error to vary with the environment temperature, and reduce the error by averaging the sensing data not to be right posture of object. The system enables to classify and load a packed stocks at the store and transportation practically based on the rectangular hexahedral objects.

  • PDF

An Analysis Technique of Ultrasonic Pulse Signal for Measuring Ship's Draught (선박의 홀수 측정을 위한 초음파 펄스 신호의 해석기법)

  • 이은방;이상집
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.4
    • /
    • pp.1-8
    • /
    • 1995
  • Although ship's draught information onboard is substantial for both the safety of navigation and the estimation of loaded cargoes, its accuracy depends, in conventional surveying method, on the skillfulness of observers and the condition of the sea surface round the vessel. To obtain more accurate information accessibly, measuring instruments with sophisticated sensors such as mechanical, electronic and ultrasonic transducers have been developed. However, they have still limitation in accuracy and in making up a system due to the complexity of processing signal. In this paper, we propose a new technique for analyzing ultrasonic pulse signal, in order to improve the measurement accuracy and simplify a remote sensing system of draught by ultrasonic waves. In this technique, pulse signal is translated into phase curve which is composed of the phase value defined in time domain. Then, the time interval between two signals different in waveform, is waveform, is analytically determined by calculating average time difference on phase curves. Also, analytical procedure can be carried out in real time with the successive five data sampled at T/4, for high speed digital processing with computer and A/D converter. This technique is useful for measuring draught under the influence of sea condition and for interfacing its data briefly to the integrated bridge system.

  • PDF

2D Indoor Map Building Scheme Using Ultrasonic Module (초음파 센서 모듈을 활용한 2D 실내 지도 작성 기법)

  • Ahn, Deock-hyeon;Kim, Nam-moon;Park, Ji-hye;Kim, Young-ok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.986-994
    • /
    • 2016
  • In this paper, we proposed ultrasonic radar module and fixed module for the 2D indoor map building and from each of the modules, we can see the possibilities, limitations and considerations. And finally show the result of building actual 2D indoor map from the modules. Recently there are lots of works for the building indoor map by spotlight on the simultaneous localization and mapping (SLAM). And the LiDAR, ultrasonic, camera sensors are usually used for this work. Especially the LiDAR sensor have a higher resolution and wider detection range more than the ultrasonic sensor, but also there are limitation in the size of module, higher cost, much more throughput of processing data, and weaker to use in various indoor environment noises. So from these reasons, in this paper we could verify that proposed modules and schemes have a enough performance to build the 2D indoor map instead of using LiDAR and camera sensor with minimum number of ultrasonic sensors and less throughput of processing data.