• 제목/요약/키워드: and thresholding

Search Result 605, Processing Time 0.023 seconds

Pixel-level Crack Detection in X-ray Computed Tomography Image of Granite using Deep Learning (딥러닝을 이용한 화강암 X-ray CT 영상에서의 균열 검출에 관한 연구)

  • Hyun, Seokhwan;Lee, Jun Sung;Jeon, Seonghwan;Kim, Yejin;Kim, Kwang Yeom;Yun, Tae Sup
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.184-196
    • /
    • 2019
  • This study aims to extract a 3D image of micro-cracks generated by hydraulic fracturing tests, using the deep learning method and X-ray computed tomography images. The pixel-level cracks are difficult to be detected via conventional image processing methods, such as global thresholding, canny edge detection, and the region growing method. Thus, the convolutional neural network-based encoder-decoder network is adapted to extract and analyze the micro-crack quantitatively. The number of training data can be acquired by dividing, rotating, and flipping images and the optimum combination for the image augmentation method is verified. Application of the optimal image augmentation method shows enhanced performance for not only the validation dataset but also the test dataset. In addition, the influence of the original number of training data to the performance of the deep learning-based neural network is confirmed, and it leads to succeed the pixel-level crack detection.

Container BIC-code region extraction and recognition method using multiple thresholding (다중 이진화를 이용한 컨테이너 BIC 부호 영역 추출 및 인식 방법)

  • Song, Jae-wook;Jung, Na-ra;Kang, Hyun-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1462-1470
    • /
    • 2015
  • The container BIC-code is a transport protocol for convenience in international shipping and combined transport environment. It is an identification code of a marine transport container which displays a wide variety of information including country's code. Recently, transportation through aircrafts and ships continues to rise. Thus fast and accurate processes are required in the ports to manage transportation. Accordingly, in this paper, we propose a BIC-code region extraction and recognition method using multiple thresholds. In the code recognition, applying a fixed threshold is not reasonable due to a variety of illumination conditions caused by change of weather, lightening, camera position, color of the container and so on. Thus, the proposed method selects the best recognition result at the final stage after applying multiple thresholds to recognition. For each threshold, we performs binarization, labeling, BIC-code pattern decision (horizontal or vertical pattern) by morphological close operation, and character separation from the BIC-code. Then, each characters is recognized by template matching. Finally we measure recognition confidence scores for all the thresholds and choose the best one. Experimental results show that the proposed method yields accurate recognition for the container BIC-code with robustness to illumination change.

Change Detection Using Image Differencing Method in Pyeongtaeg City (화상간(畵像間) 차이법(差異法)을 활용한 평택시 지역 지표면(地表面) 변화탐지(變化探知))

  • Rim, Sang-Kyu;Kim, Moo-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.185-195
    • /
    • 2002
  • The purpose of this study is to evaluate and seek the best suitable band and threshold boundary level on the change detection of image differencing method using Landsat TM data(20 May 1987 and 20 May 1993) in Pyeongtaeg City. The change detection images differencing method were evaluated by using normal reference data with an optimal threshold level{$mean{\pm}(SD{\times}T$ value). The normal reference data consisted of positive change{change dark into light in image pattern, that is, it changed arable land(paddy, upland, forest and so on) to artificial area(buildings, vinyl-house and roads, etc)} and negative change(change light into dark in image pattern, that is, it changed artificial area into arable land). As the result, the kappa coefficients of visible bands(D1, D2 and D3) were higher than those of infrared bands(D4, D5 and D7), and than D1 image with 1.0 thresholding and normal reference data was a improved result in the land-surface change detection such as kappa coefficient : 68.4%, overall accuracy : 89.2%, negative change : 6.6%, positive change : 10.6%.

Color-Depth Combined Semantic Image Segmentation Method (색상과 깊이정보를 융합한 의미론적 영상 분할 방법)

  • Kim, Man-Joung;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.687-696
    • /
    • 2014
  • This paper presents a semantic object extraction method using user's stroke input, color, and depth information. It is supposed that a semantically meaningful object is surrounded with a few strokes from a user, and has similar depths all over the object. In the proposed method, deciding the region of interest (ROI) is based on the stroke input, and the semantically meaningful object is extracted by using color and depth information. Specifically, the proposed method consists of two steps. The first step is over-segmentation inside the ROI using color and depth information. The second step is semantically meaningful object extraction where over-segmented regions are classified into the object region and the background region according to the depth of each region. In the over-segmentation step, we propose a new marker extraction method where there are two propositions, i.e. an adaptive thresholding scheme to maximize the number of the segmented regions and an adaptive weighting scheme for color and depth components in computation of the morphological gradients that is required in the marker extraction. In the semantically meaningful object extraction, we classify over-segmented regions into the object region and the background region in order of the boundary regions to the inner regions, the average depth of each region being compared to the average depth of all regions classified into the object region. In experimental results, we demonstrate that the proposed method yields reasonable object extraction results.

Estimation of Populations of Moth Using Object Segmentation and an SVM Classifier (객체 분할과 SVM 분류기를 이용한 해충 개체 수 추정)

  • Hong, Young-Ki;Kim, Tae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.705-710
    • /
    • 2017
  • This paper proposes an estimation method of populations of Grapholita molestas using object segmentation and an SVM classifier in the moth images. Object segmentation and moth classification were performed on images of Grapholita molestas moth acquired on a pheromone trap equipped in an orchard. Object segmentation consisted of pre-processing, thresholding, morphological filtering, and object labeling process. The classification of Grapholita molestas in the moth images consisted of the training and classification of an SVM classifier and estimation of the moth populations. The object segmentation simplifies the moth classification process by segmenting the individual objects before passing an input image to the SVM classifier. The image blocks were extracted around the center point and principle axis of the segmented objects, and fed into the SVM classifier. In the experiments, the proposed method performed an estimation of the moth populations for 10 moth images and achieved an average estimation precision rate of 97%. Therefore, it showed an effective monitoring method of populations of Grapholita molestas in the orchard. In addition, the mean processing time of the proposed method and sliding window technique were 2.4 seconds and 5.7 seconds, respectively. Therefore, the proposed method has a 2.4 times faster processing time than the latter technique.

Automatic Matching of Building Polygon Dataset from Digital Maps Using Hierarchical Matching Algorithm (계층적 매칭 기법을 이용한 수치지도 건물 폴리곤 데이터의 자동 정합에 관한 연구)

  • Yeom, Junho;Kim, Yongil;Lee, Jeabin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • The interoperability of multi-source data has become more important due to various digital maps, produced from public institutions and enterprises. In this study, the automatic matching algorithm of multi-source building data using hierarchical matching was proposed. At first, we divide digital maps into blocks and perform the primary geometric registration of buildings with the ICP algorithm. Then, corresponding building pairs were determined by evaluating the similarity of overlap area, and the matching threshold value of similarity was automatically derived by the Otsu binary thresholding. After the first matching, we extracted error matching candidates buildings which are similar with threshold value to conduct the secondary ICP matching and to make a matching decision using turning angle function analysis. For the evaluation, the proposed method was applied to representative public digital maps, road name address map and digital topographic map 2.0. As a result, the F measures of matching and non-matching buildings increased by 2% and 17%, respectively. Therefore, the proposed method is efficient for the matching of building polygons from multi-source digital maps.

Automatic Extraction of the Land Readjustment Paddy for High-level Land Cover Classification (토지 피복 세분류를 위한 경지 정리 논 자동 추출)

  • Yeom, Jun Ho;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.443-450
    • /
    • 2014
  • To fulfill the recent increasement in the public and private demands for various spatial data, the central and local governments started to produce those data. The low-level land cover map has been produced since 2000, yet the production of high-level land covered map has started later in 2010, and recently, a few regions was completed recently. Although many studies have been carried to improve the quality of land that covered in the map, most of them have been focused on the low-level and mid-level classifications. For that reason, the study for high-level classification is still insufficient. Therefore, in this study, we suggested the automatic extraction of land readjustment for paddy land that updated in the mid-level land mapping. At the study, the RapidEye satellite images, which consider efficient to apply in the agricultural field, were used, and the high pass filtering emphasized the outline of paddy field. Also, the binary images of the paddy outlines were generated from the Otsu thresholding. The boundary information of paddy field was extracted from the image-to-map registrations and masking of paddy land cover. Lastly, the snapped edges were linked, as well as the linear features of paddy outlines were extracted by the regional Hough line extraction. The start and end points that were close to each other were linked to complete the paddy field outlines. In fact, the boundary of readjusted paddy fields was able to be extracted efficiently. We could conclude in that this study contributed to the automatic production of a high-level land cover map for paddy fields.

Evaluation of Automatic Image Segmentation for 3D Volume Measurement of Liver and Spleen Based on 3D Region-growing Algorithm using Animal Phantom (간과 비장의 체적을 구하기 위한 3차원 영역 확장 기반 자동 영상 분할 알고리즘의 동물팬텀을 이용한 성능검증)

  • Kim, Jin-Sung;Cho, June-Sik;Shin, Kyung-Sook;Kim, Jin-Hwan;Jeon, Ho-Sang;Cho, Gyu-Seong
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2008
  • Living donor liver transplantation is increasingly performed as an alternative to cadaveric transplantation. Preoperative screening of the donor candidates is very important. The quality, size, and vascular and biliary anatomy of the liver are best assessed with magnetic resonance (MR) imaging or computed tomography (CT). In particular, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Preoperative liver segmentation has proved useful for measuring the graft volume before living donor liver transplantations in previous studies. In these studies, the liver segments were manually delineated on each image section. The delineated areas were multiplied by the section thickness to obtain volumes and summed to obtain the total volume of the liver segments. This process is tedious and time consuming. To compensate for this problem, automatic segmentation techniques have been proposed with multiplanar CT images. These methods involve the use of sequences of thresholding, morphologic operations (ie, mathematic operations, such as image dilation, erosion, opening, and closing, that are based on shape), and 3D region growing methods. These techniques are complex but require a few computation times. We made a phantom for volume measurement with pig and evaluated actual volume of spleen and liver of phantom. The results represent that our semiautomatic volume measurement algorithm shows a good accuracy and repeatability with actual volume of phantom and possibility for clinical use to assist physician as a measuring tool.

  • PDF

Real-time Moving Object Recognition and Tracking Using The Wavelet-based Neural Network and Invariant Moments (웨이블릿 기반의 신경망과 불변 모멘트를 이용한 실시간 이동물체 인식 및 추적 방법)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.10-21
    • /
    • 2008
  • The present paper propose a real-time moving object recognition and tracking method using the wavelet-based neural network and invariant moments. Candidate moving region detection phase which is the first step of the proposed method detects the candidate regions where a pixel value changes occur due to object movement based on the difference image analysis between continued two image frames. The object recognition phase which is second step of proposed method recognizes the vehicle regions from the detected candidate regions using wavelet neurual-network. From object tracking Phase which is third step the recognized vehicle regions tracks using matching methods of wavelet invariant moments bases to recognized object. To detect a moving object from image sequence the candidate regions detection phase uses an adaptive thresholding method between previous image and current image as result it was robust surroundings environmental change and moving object detections were possible. And by using wavelet features to recognize and tracking of vehicle, the proposed method decrease calculation time and not only it will be able to minimize the effect in compliance with noise of road image, vehicle recognition accuracy became improved. The result which it experiments from the image which it acquires from the general road image sequence and vehicle detection rate is 92.8%, the computing time per frame is 0.24 seconds. The proposed method can be efficiently apply to a real-time intelligence road traffic surveillance system.

Segmentation and Visualization of Human Anatomy using Medical Imagery (의료영상을 이용한 인체장기의 분할 및 시각화)

  • Lee, Joon-Ku;Kim, Yang-Mo;Kim, Do-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.191-197
    • /
    • 2013
  • Conventional CT and MRI scans produce cross-section slices of body that are viewed sequentially by radiologists who must imagine or extrapolate from these views what the 3 dimensional anatomy should be. By using sophisticated algorithm and high performance computing, these cross-sections may be rendered as direct 3D representations of human anatomy. The 2D medical image analysis forced to use time-consuming, subjective, error-prone manual techniques, such as slice tracing and region painting, for extracting regions of interest. To overcome the drawbacks of 2D medical image analysis, combining with medical image processing, 3D visualization is essential for extracting anatomical structures and making measurements. We used the gray-level thresholding, region growing, contour following, deformable model to segment human organ and used the feature vectors from texture analysis to detect harmful cancer. We used the perspective projection and marching cube algorithm to render the surface from volumetric MR and CT image data. The 3D visualization of human anatomy and segmented human organ provides valuable benefits for radiation treatment planning, surgical planning, surgery simulation, image guided surgery and interventional imaging applications.